ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning
- URL: http://arxiv.org/abs/2402.12185v2
- Date: Wed, 11 Sep 2024 02:49:10 GMT
- Title: ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning
- Authors: Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Min Dou, Botian Shi, Junchi Yan, Yu Qiao,
- Abstract summary: We benchmark the ability of off-the-shelf Multi-modal Large Language Models (MLLMs) in the chart domain.
We construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data.
We develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns.
- Score: 54.82612435284695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many versatile Multi-modal Large Language Models (MLLMs) have emerged continuously. However, their capacity to query information depicted in visual charts and engage in reasoning based on the queried contents remains under-explored. In this paper, to comprehensively and rigorously benchmark the ability of the off-the-shelf MLLMs in the chart domain, we construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data. Besides, we develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns, such as reasoning tasks in the field of charts or geometric images. We evaluate the chart-related ability of mainstream MLLMs and our ChartVLM on the proposed ChartX evaluation set. Extensive experiments demonstrate that ChartVLM surpasses both versatile and chart-related large models, achieving results comparable to GPT-4V. We believe that our study can pave the way for further exploration in creating a more comprehensive chart evaluation set and developing more interpretable multi-modal models. Both ChartX and ChartVLM are available at: https://github.com/UniModal4Reasoning/ChartVLM
Related papers
- CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs [62.84082370758761]
CharXiv is a comprehensive evaluation suite involving 2,323 charts from arXiv papers.
To ensure quality, all charts and questions are handpicked, curated, and verified by human experts.
Results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model.
arXiv Detail & Related papers (2024-06-26T17:50:11Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
We present TinyChart, an efficient MLLM for chart understanding with only 3B parameters.
TinyChart overcomes two key challenges in efficient chart understanding: (1) reduce the burden of learning numerical computations through a Program-of-Thoughts (PoT) learning strategy, and (2) reduce lengthy vision feature sequences produced by the vision transformer for high-resolution images through a Vision Token Merging module.
arXiv Detail & Related papers (2024-04-25T14:23:24Z) - ChartAssisstant: A Universal Chart Multimodal Language Model via
Chart-to-Table Pre-training and Multitask Instruction Tuning [54.89249749894061]
ChartAssistant is a vision-language model for universal chart comprehension and reasoning.
It undergoes a two-stage training process, starting with pre-training on chart-to-table parsing to align chart and text.
Experimental results demonstrate significant performance gains over the state-of-the-art UniChart and Chartllama method.
arXiv Detail & Related papers (2024-01-04T17:51:48Z) - ChartBench: A Benchmark for Complex Visual Reasoning in Charts [36.492851648081405]
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in image understanding and generation.
Current benchmarks fail to accurately evaluate the chart comprehension of MLLMs due to limited chart types and inappropriate metrics.
We propose ChartBench, a comprehensive benchmark designed to assess chart comprehension and data reliability through complex visual reasoning.
arXiv Detail & Related papers (2023-12-26T07:20:55Z) - ChartLlama: A Multimodal LLM for Chart Understanding and Generation [70.1393163657813]
We create a high-quality instruction-tuning dataset leveraging GPT-4.
Next, we introduce ChartLlama, a multi-modal large language model that we've trained using our created dataset.
arXiv Detail & Related papers (2023-11-27T15:20:23Z) - MMC: Advancing Multimodal Chart Understanding with Large-scale Instruction Tuning [48.63002688222462]
A gap remains in the domain of chart image understanding due to the distinct abstract components in charts.
We introduce a large-scale MultiModal Chart Instruction dataset comprising 600k instances supporting diverse tasks and chart types.
We develop MultiModal Chart Assistant (textbfMMC-A), an LMM that achieves state-of-the-art performance on existing chart QA benchmarks.
arXiv Detail & Related papers (2023-11-15T23:36:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.