Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations
- URL: http://arxiv.org/abs/2402.12231v5
- Date: Fri, 19 Jul 2024 09:21:04 GMT
- Title: Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations
- Authors: Jonas Beck, Nathanael Bosch, Michael Deistler, Kyra L. Kadhim, Jakob H. Macke, Philipp Hennig, Philipp Berens,
- Abstract summary: Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging.
We propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs.
We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin-Huxley model with a practically relevant number of parameters.
- Score: 34.500484733973536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging. In particular, although ODEs are differentiable and would allow for gradient-based parameter optimization, the nonlinear dynamics of ODEs often lead to many local minima and extreme sensitivity to initial conditions. We therefore propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs. By iteratively reducing a noise parameter of the probabilistic integrator, the proposed method converges more reliably to the true parameters. We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin-Huxley model with a practically relevant number of parameters.
Related papers
- Estimating unknown parameters in differential equations with a reinforcement learning based PSO method [2.9808905403445145]
This paper reformulates the parameter estimation problem of differential equations as an optimization problem by introducing the concept of particles.
Building on reinforcement learning-based particle swarm optimization (RLLPSO), this paper proposes a novel method, DERLPSO, for estimating unknown parameters of differential equations.
The experimental results demonstrate that our DERLPSO consistently outperforms other methods in terms of performance, achieving an average Mean Square Error of 1.13e-05.
arXiv Detail & Related papers (2024-11-13T14:40:51Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Data-Adaptive Probabilistic Likelihood Approximation for Ordinary
Differential Equations [0.0]
We present a novel probabilistic ODE likelihood approximation, DALTON, which can dramatically reduce parameter sensitivity.
Our approximation scales linearly in both ODE variables and time discretization points, and is applicable to ODEs with both partially-unobserved components and non-Gaussian measurement models.
arXiv Detail & Related papers (2023-06-08T21:18:25Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
This work presents a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification.
The proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model.
These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations.
arXiv Detail & Related papers (2022-11-13T01:57:18Z) - Automated differential equation solver based on the parametric
approximation optimization [77.34726150561087]
The article presents a method that uses an optimization algorithm to obtain a solution using the parameterized approximation.
It allows solving the wide class of equations in an automated manner without the algorithm's parameters change.
arXiv Detail & Related papers (2022-05-11T10:06:47Z) - Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution
Differential Equations [83.3201889218775]
Several widely-used first-order saddle-point optimization methods yield an identical continuous-time ordinary differential equation (ODE) when derived naively.
However, the convergence properties of these methods are qualitatively different, even on simple bilinear games.
We adopt a framework studied in fluid dynamics to design differential equation models for several saddle-point optimization methods.
arXiv Detail & Related papers (2021-12-27T18:31:34Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
We introduce robust Gaussian process uniform error bounds in settings with unknown hyper parameters.
Our approach computes a confidence region in the space of hyper parameters, which enables us to obtain a probabilistic upper bound for the model error.
Experiments show that the bound performs significantly better than vanilla and fully Bayesian processes.
arXiv Detail & Related papers (2021-09-06T17:10:01Z) - NanoFlow: Scalable Normalizing Flows with Sublinear Parameter Complexity [28.201670958962453]
Normalizing flows (NFs) have become a prominent method for deep generative models that allow for an analytic probability density estimation and efficient synthesis.
We present an alternative parameterization scheme called NanoFlow, which uses a single neural density estimator to model multiple transformation stages.
arXiv Detail & Related papers (2020-06-11T09:35:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.