Short-Period Variables in TESS Full-Frame Image Light Curves Identified via Convolutional Neural Networks
- URL: http://arxiv.org/abs/2402.12369v2
- Date: Thu, 03 Oct 2024 03:11:19 GMT
- Title: Short-Period Variables in TESS Full-Frame Image Light Curves Identified via Convolutional Neural Networks
- Authors: Greg Olmschenk, Richard K. Barry, Stela Ishitani Silva, Brian P. Powell, Ethan Kruse, Jeremy D. Schnittman, Agnieszka M. Cieplak, Thomas Barclay, Siddhant Solanki, Bianca Ortega, John Baker, Yesenia Helem Salinas Mamani,
- Abstract summary: We present a convolutional neural network that we train to identify short period variables.
Our network performs inference on a TESS 30-minute cadence light curve in 5ms on a single GPU.
We present a collection of 14156 short-period variables identified by our network.
- Score: 0.37187295985559027
- License:
- Abstract: The Transiting Exoplanet Survey Satellite (TESS) mission measured light from stars in ~85% of the sky throughout its two-year primary mission, resulting in millions of TESS 30-minute cadence light curves to analyze in the search for transiting exoplanets. To search this vast dataset, we aim to provide an approach that is both computationally efficient, produces highly performant predictions, and minimizes the required human search effort. We present a convolutional neural network that we train to identify short period variables. To make a prediction for a given light curve, our network requires no prior target parameters identified using other methods. Our network performs inference on a TESS 30-minute cadence light curve in ~5ms on a single GPU, enabling large scale archival searches. We present a collection of 14156 short-period variables identified by our network. The majority of our identified variables fall into two prominent populations, one of short-period main sequence binaries and another of Delta Scuti stars. Our neural network model and related code is additionally provided as open-source code for public use and extension.
Related papers
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Prediction [0.0]
We exploit the power of deep learning algorithms to forecast scour depth variations around bridge piers based on historical sensor monitoring data.
We investigated the performance of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) models for real-time scour forecasting.
arXiv Detail & Related papers (2024-04-25T12:04:36Z) - Computing Transiting Exoplanet Parameters with 1D Convolutional Neural
Networks [0.0]
Two 1D convolutional neural network models are presented.
One model operates on complete light curves and estimates the orbital period.
The other one operates on phase-folded light curves and estimates the semimajor axis of the orbit and the square of the planet-to-star radius ratio.
arXiv Detail & Related papers (2024-02-21T10:17:23Z) - Active search and coverage using point-cloud reinforcement learning [50.741409008225766]
This paper presents an end-to-end deep reinforcement learning solution for target search and coverage.
We show that deep hierarchical feature learning works for RL and that by using farthest point sampling (FPS) we can reduce the amount of points.
We also show that multi-head attention for point-clouds helps to learn the agent faster but converges to the same outcome.
arXiv Detail & Related papers (2023-12-18T18:16:30Z) - One-dimensional Convolutional Neural Networks for Detecting Transiting
Exoplanets [39.58317527488534]
We develop an artificial neural network model that is able to detect transits in light curves obtained from different telescopes and surveys.
We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model.
arXiv Detail & Related papers (2023-12-12T10:56:27Z) - Deep-learning based measurement of planetary radial velocities in the
presence of stellar variability [70.4007464488724]
We use neural networks to reduce stellar RV jitter in three years of HARPS-N sun-as-a-star spectra.
We find that the multi-line CNN is able to recover planets with 0.2 m/s semi-amplitude, 50 day period, with 8.8% error in the amplitude and 0.7% in the period.
arXiv Detail & Related papers (2023-04-10T18:33:36Z) - When Spectral Modeling Meets Convolutional Networks: A Method for
Discovering Reionization-era Lensed Quasars in Multi-band Imaging Data [0.0]
We introduce a new spatial geometry veto criterion, implemented via image-based deep learning.
We make the first application of this approach in a systematic search for reionization-era lensed quasars.
The training datasets are constructed by painting deflected point-source lights over actual galaxy images to generate realistic galaxy-quasar lens models.
arXiv Detail & Related papers (2022-11-26T11:27:13Z) - Mixed-Precision Neural Network Quantization via Learned Layer-wise
Importance [50.00102219630088]
Mixed-precision quantization (MPQ) makes it hard to determine the optimal bit-width for each layer.
We propose a joint training scheme that can obtain all indicators at once.
For example, MPQ search on ResNet18 with our indicators takes only 0.06 seconds.
arXiv Detail & Related papers (2022-03-16T03:23:50Z) - Accelerating Training and Inference of Graph Neural Networks with Fast
Sampling and Pipelining [58.10436813430554]
Mini-batch training of graph neural networks (GNNs) requires a lot of computation and data movement.
We argue in favor of performing mini-batch training with neighborhood sampling in a distributed multi-GPU environment.
We present a sequence of improvements to mitigate these bottlenecks, including a performance-engineered neighborhood sampler.
We also conduct an empirical analysis that supports the use of sampling for inference, showing that test accuracies are not materially compromised.
arXiv Detail & Related papers (2021-10-16T02:41:35Z) - Towards a method to anticipate dark matter signals with deep learning at
the LHC [58.720142291102135]
We study several simplified dark matter (DM) models and their signatures at the LHC using neural networks.
We focus on the usual monojet plus missing transverse energy channel, but to train the algorithms we organize the data in 2D histograms instead of event-by-event arrays.
This results in a large performance boost to distinguish between standard model (SM) only and SM plus new physics signals.
arXiv Detail & Related papers (2021-05-25T15:38:13Z) - Identifying Planetary Transit Candidates in TESS Full-Frame Image Light
Curves via Convolutional Neural Networks [1.2583362454189522]
Transiting Exoplanet Survey Satellite measured light from stars in 75% of the sky throughout its two year primary mission.
Millions of TESS 30-minute cadence light curves to analyze in the search for transiting exoplanets.
We present a convolutional neural network, which we train to identify planetary transit signals and dismiss false positives.
We present 181 new planet candidates identified by our network, which pass subsequent human vetting designed to rule out false positives.
arXiv Detail & Related papers (2021-01-26T16:40:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.