FiT: Flexible Vision Transformer for Diffusion Model
- URL: http://arxiv.org/abs/2402.12376v4
- Date: Tue, 15 Oct 2024 02:51:00 GMT
- Title: FiT: Flexible Vision Transformer for Diffusion Model
- Authors: Zeyu Lu, Zidong Wang, Di Huang, Chengyue Wu, Xihui Liu, Wanli Ouyang, Lei Bai,
- Abstract summary: We present a transformer architecture specifically designed for generating images with unrestricted resolutions and aspect ratios.
Unlike traditional methods that perceive images as static-resolution grids, FiT conceptualizes images as sequences of dynamically-sized tokens.
Comprehensive experiments demonstrate the exceptional performance of FiT across a broad range of resolutions.
- Score: 81.85667773832279
- License:
- Abstract: Nature is infinitely resolution-free. In the context of this reality, existing diffusion models, such as Diffusion Transformers, often face challenges when processing image resolutions outside of their trained domain. To overcome this limitation, we present the Flexible Vision Transformer (FiT), a transformer architecture specifically designed for generating images with unrestricted resolutions and aspect ratios. Unlike traditional methods that perceive images as static-resolution grids, FiT conceptualizes images as sequences of dynamically-sized tokens. This perspective enables a flexible training strategy that effortlessly adapts to diverse aspect ratios during both training and inference phases, thus promoting resolution generalization and eliminating biases induced by image cropping. Enhanced by a meticulously adjusted network structure and the integration of training-free extrapolation techniques, FiT exhibits remarkable flexibility in resolution extrapolation generation. Comprehensive experiments demonstrate the exceptional performance of FiT across a broad range of resolutions, showcasing its effectiveness both within and beyond its training resolution distribution. Repository available at https://github.com/whlzy/FiT.
Related papers
- FiTv2: Scalable and Improved Flexible Vision Transformer for Diffusion Model [76.84519526283083]
We present the textbfFlexible Vision Transformer (FiT), a transformer architecture specifically designed for generating images with textitunrestricted resolutions and aspect ratios
FiTv2 exhibits $2times$ convergence speed of FiT, when incorporating advanced training-free extrapolation techniques.
Comprehensive experiments demonstrate the exceptional performance of FiTv2 across a broad range of resolutions.
arXiv Detail & Related papers (2024-10-17T15:51:49Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - TF-ICON: Diffusion-Based Training-Free Cross-Domain Image Composition [13.087647740473205]
TF-ICON is a framework that harnesses the power of text-driven diffusion models for cross-domain image-guided composition.
TF-ICON can leverage off-the-shelf diffusion models to perform cross-domain image-guided composition without requiring additional training, finetuning, or optimization.
Our experiments show that equipping Stable Diffusion with the exceptional prompt outperforms state-of-the-art inversion methods on various datasets.
arXiv Detail & Related papers (2023-07-24T02:50:44Z) - Real-World Image Variation by Aligning Diffusion Inversion Chain [53.772004619296794]
A domain gap exists between generated images and real-world images, which poses a challenge in generating high-quality variations of real-world images.
We propose a novel inference pipeline called Real-world Image Variation by ALignment (RIVAL)
Our pipeline enhances the generation quality of image variations by aligning the image generation process to the source image's inversion chain.
arXiv Detail & Related papers (2023-05-30T04:09:47Z) - Intriguing Properties of Vision Transformers [114.28522466830374]
Vision transformers (ViT) have demonstrated impressive performance across various machine vision problems.
We systematically study this question via an extensive set of experiments and comparisons with a high-performing convolutional neural network (CNN)
We show effective features of ViTs are due to flexible receptive and dynamic fields possible via the self-attention mechanism.
arXiv Detail & Related papers (2021-05-21T17:59:18Z) - Diverse Image Inpainting with Bidirectional and Autoregressive
Transformers [55.21000775547243]
We propose BAT-Fill, an image inpainting framework with a novel bidirectional autoregressive transformer (BAT)
BAT-Fill inherits the merits of transformers and CNNs in a two-stage manner, which allows to generate high-resolution contents without being constrained by the quadratic complexity of attention in transformers.
arXiv Detail & Related papers (2021-04-26T03:52:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.