Multi-class Temporal Logic Neural Networks
- URL: http://arxiv.org/abs/2402.12397v2
- Date: Tue, 25 Jun 2024 02:58:06 GMT
- Title: Multi-class Temporal Logic Neural Networks
- Authors: Danyang Li, Roberto Tron,
- Abstract summary: Time-series data can represent the behaviors of autonomous systems, such as drones and self-driving cars.
We propose a method that combines neural networks that represent STL specifications for multi-class classification of time-series data.
We evaluate our method on two datasets and compare it with state-of-the-art baselines.
- Score: 8.20828081284034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-series data can represent the behaviors of autonomous systems, such as drones and self-driving cars. The task of binary and multi-class classification for time-series data has become a prominent area of research. Neural networks represent a popular approach to classifying data; However, they lack interpretability, which poses a significant challenge in extracting meaningful information from them. Signal Temporal Logic (STL) is a formalism that describes the properties of timed behaviors. We propose a method that combines all of the above: neural networks that represent STL specifications for multi-class classification of time-series data. We offer two key contributions: 1) We introduce a notion of margin for multi-class classification, and 2) we introduce STL-based attributes for enhancing the interpretability of the results. We evaluate our method on two datasets and compare it with state-of-the-art baselines.
Related papers
- MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
We introduce a new framework for interpreting time series data by extracting and clustering the input representative patterns.
We run experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets.
arXiv Detail & Related papers (2023-06-06T16:24:27Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Learning Signal Temporal Logic through Neural Network for Interpretable
Classification [13.829082181692872]
We propose an explainable neural-symbolic framework for the classification of time-series behaviors.
We demonstrate the computational efficiency, compactness, and interpretability of the proposed method through driving scenarios and naval surveillance case studies.
arXiv Detail & Related papers (2022-10-04T21:11:54Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Classification of Long Sequential Data using Circular Dilated
Convolutional Neural Networks [10.014879130837912]
We propose a symmetric multi-scale architecture called Circular Dilated Convolutional Neural Network (CDIL-CNN)
Our model gives classification logits in all positions, and we can apply a simple ensemble learning to achieve a better decision.
arXiv Detail & Related papers (2022-01-06T16:58:59Z) - Towards Similarity-Aware Time-Series Classification [51.2400839966489]
We study time-series classification (TSC), a fundamental task of time-series data mining.
We propose Similarity-Aware Time-Series Classification (SimTSC), a framework that models similarity information with graph neural networks (GNNs)
arXiv Detail & Related papers (2022-01-05T02:14:57Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS) is a novel disentanglement enhancement framework for sequential data.
DTS generates hierarchical semantic concepts as the interpretable and disentangled representation of time-series.
DTS achieves superior performance in downstream applications, with high interpretability of semantic concepts.
arXiv Detail & Related papers (2021-05-17T22:02:24Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Interpretable Time-series Classification on Few-shot Samples [27.05851877375113]
This paper proposes an interpretable neural-based framework, namely textitDual Prototypical Shapelet Networks (DPSN) for few-shot time-series classification.
DPSN interprets the model from dual granularity: 1) global overview using representative time series samples, and 2) local highlights using discriminative shapelets.
We have derived 18 few-shot TSC datasets from public benchmark datasets and evaluated the proposed method by comparing with baselines.
arXiv Detail & Related papers (2020-06-03T03:47:14Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Time Series Data Augmentation for Neural Networks by Time Warping with a
Discriminative Teacher [17.20906062729132]
We propose a novel time series data augmentation called guided warping.
guided warping exploits the element alignment properties of Dynamic Time Warping (DTW) and shapeDTW.
We evaluate the method on all 85 datasets in the 2015 UCR Time Series Archive with a deep convolutional neural network (CNN) and a recurrent neural network (RNN)
arXiv Detail & Related papers (2020-04-19T06:33:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.