TorchCP: A Library for Conformal Prediction based on PyTorch
- URL: http://arxiv.org/abs/2402.12683v1
- Date: Tue, 20 Feb 2024 03:14:47 GMT
- Title: TorchCP: A Library for Conformal Prediction based on PyTorch
- Authors: Hongxin Wei, Jianguo Huang
- Abstract summary: TorchCP is a Python toolbox for conformal prediction research on deep learning models.
It contains various implementations for posthoc and training methods for classification and regression tasks.
- Score: 9.295285907724672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: TorchCP is a Python toolbox for conformal prediction research on deep
learning models. It contains various implementations for posthoc and training
methods for classification and regression tasks (including multi-dimension
output). TorchCP is built on PyTorch (Paszke et al., 2019) and leverages the
advantages of matrix computation to provide concise and efficient inference
implementations. The code is licensed under the LGPL license and is
open-sourced at $\href{https://github.com/ml-stat-Sustech/TorchCP}{\text{this
https URL}}$.
Related papers
- ml_edm package: a Python toolkit for Machine Learning based Early Decision Making [0.43363943304569713]
textttml_edm is a Python 3 library designed for early decision making of any learning tasks involving temporal/sequential data.
textttscikit-learn makes estimators and pipelines compatible with textttml_edm.
arXiv Detail & Related papers (2024-08-23T09:08:17Z) - depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers [92.13613958373628]
textttdepyf is a tool designed to demystify the inner workings of the PyTorch compiler.
textttdepyf decompiles bytecode generated by PyTorch back into equivalent source code.
arXiv Detail & Related papers (2024-03-14T16:17:14Z) - torchgfn: A PyTorch GFlowNet library [56.071033896777784]
torchgfn is a PyTorch library that aims to address this need.
It provides users with a simple API for environments and useful abstractions for samplers and losses.
arXiv Detail & Related papers (2023-05-24T00:20:59Z) - PyGOD: A Python Library for Graph Outlier Detection [56.33769221859135]
PyGOD is an open-source library for detecting outliers in graph data.
It supports a wide array of leading graph-based methods for outlier detection.
PyGOD is released under a BSD 2-Clause license at https://pygod.org and at the Python Package Index (PyPI)
arXiv Detail & Related papers (2022-04-26T06:15:21Z) - Deepchecks: A Library for Testing and Validating Machine Learning Models
and Data [8.876608553825227]
Deepchecks is a Python library for comprehensively validating machine learning models and data.
Our goal is to provide an easy-to-use library comprising of many checks related to various types of issues.
arXiv Detail & Related papers (2022-03-16T09:37:22Z) - $\texttt{py-irt}$: A Scalable Item Response Theory Library for Python [3.9828133571463935]
$textttpy-irt$ is a Python library for fitting Bayesian Item Response Theory (IRT) models.
It estimates latent traits of subjects and items, making it appropriate for use in IRT tasks as well as ideal-point models.
arXiv Detail & Related papers (2022-03-02T18:09:46Z) - PyHHMM: A Python Library for Heterogeneous Hidden Markov Models [63.01207205641885]
PyHHMM is an object-oriented Python implementation of Heterogeneous-Hidden Markov Models (HHMMs)
PyHHMM emphasizes features not supported in similar available frameworks: a heterogeneous observation model, missing data inference, different model order selection criterias, and semi-supervised training.
PyHHMM relies on the numpy, scipy, scikit-learn, and seaborn Python packages, and is distributed under the Apache-2.0 License.
arXiv Detail & Related papers (2022-01-12T07:32:36Z) - PyTorchVideo: A Deep Learning Library for Video Understanding [71.89124881732015]
PyTorchVideo is an open-source deep-learning library for video understanding tasks.
It covers a full stack of video understanding tools including multimodal data loading, transformations, and models.
The library is based on PyTorch and can be used by any training framework.
arXiv Detail & Related papers (2021-11-18T18:59:58Z) - DoubleML -- An Object-Oriented Implementation of Double Machine Learning
in Python [1.4911092205861822]
DoubleML is an open-source Python library implementing the double machine learning framework of Chernozhukov et al.
It contains functionalities for valid statistical inference on causal parameters when the estimation of parameters is based on machine learning methods.
The package is distributed under the MIT license and relies on core libraries from the scientific Python ecosystem.
arXiv Detail & Related papers (2021-04-07T16:16:39Z) - TorchKGE: Knowledge Graph Embedding in Python and PyTorch [0.0]
TorchKGE is a Python module for knowledge graph (KG) embedding relying solely on PyTorch.
It features a KG data structure, simple model interfaces and modules for negative sampling and model evaluation.
arXiv Detail & Related papers (2020-09-07T09:21:34Z) - mvlearn: Multiview Machine Learning in Python [103.55817158943866]
mvlearn is a Python library which implements the leading multiview machine learning methods.
The package can be installed from Python Package Index (PyPI) and the conda package manager.
arXiv Detail & Related papers (2020-05-25T02:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.