Fast Rates in Online Convex Optimization by Exploiting the Curvature of
Feasible Sets
- URL: http://arxiv.org/abs/2402.12868v1
- Date: Tue, 20 Feb 2024 09:59:33 GMT
- Title: Fast Rates in Online Convex Optimization by Exploiting the Curvature of
Feasible Sets
- Authors: Taira Tsuchiya, Shinji Ito
- Abstract summary: In online linear optimization, it is known that if the average gradient of loss functions is larger than a certain value, the curvature of feasible sets can be exploited.
This paper reveals that algorithms adaptive to the curvature of loss functions can also leverage the curvature of feasible sets.
- Score: 42.37773914630974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore online convex optimization (OCO) and introduce a
new analysis that provides fast rates by exploiting the curvature of feasible
sets. In online linear optimization, it is known that if the average gradient
of loss functions is larger than a certain value, the curvature of feasible
sets can be exploited by the follow-the-leader (FTL) algorithm to achieve a
logarithmic regret. This paper reveals that algorithms adaptive to the
curvature of loss functions can also leverage the curvature of feasible sets.
We first prove that if an optimal decision is on the boundary of a feasible set
and the gradient of an underlying loss function is non-zero, then the algorithm
achieves a regret upper bound of $O(\rho \log T)$ in stochastic environments.
Here, $\rho > 0$ is the radius of the smallest sphere that includes the optimal
decision and encloses the feasible set. Our approach, unlike existing ones, can
work directly with convex loss functions, exploiting the curvature of loss
functions simultaneously, and can achieve the logarithmic regret only with a
local property of feasible sets. Additionally, it achieves an $O(\sqrt{T})$
regret even in adversarial environments where FTL suffers an $\Omega(T)$
regret, and attains an $O(\rho \log T + \sqrt{C \rho \log T})$ regret bound in
corrupted stochastic environments with corruption level $C$. Furthermore, by
extending our analysis, we establish a regret upper bound of
$O\Big(T^{\frac{q-2}{2(q-1)}} (\log T)^{\frac{q}{2(q-1)}}\Big)$ for
$q$-uniformly convex feasible sets, where uniformly convex sets include
strongly convex sets and $\ell_p$-balls for $p \in [1,\infty)$. This bound
bridges the gap between the $O(\log T)$ regret bound for strongly convex sets
($q=2$) and the $O(\sqrt{T})$ regret bound for non-curved sets ($q\to\infty$).
Related papers
- Online Convex Optimization with a Separation Oracle [10.225358400539719]
We introduce a new projection-free algorithm for Online Convex Optimization (OCO) with a state-of-the-art regret guarantee.
Our algorithm achieves a regret bound of $widetildeO(sqrtdT + kappa d)$, while requiring only $widetildeO(1) calls to a separation oracle per round.
arXiv Detail & Related papers (2024-10-03T13:35:08Z) - Nearly Optimal Regret for Decentralized Online Convex Optimization [53.433398074919]
Decentralized online convex optimization (D-OCO) aims to minimize a sequence of global loss functions using only local computations and communications.
We develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions.
Our algorithms are nearly optimal in terms of $T$, $n$, and $rho$.
arXiv Detail & Related papers (2024-02-14T13:44:16Z) - Improved Dynamic Regret for Online Frank-Wolfe [54.690867216880356]
We investigate the dynamic regret of online Frank-Wolfe (OFW), which is an efficient projection-free algorithm for online convex optimization.
In this paper, we derive improved dynamic regret bounds for OFW by extending the fast convergence rates of FW from offline optimization to online optimization.
arXiv Detail & Related papers (2023-02-11T07:19:51Z) - An Optimal Stochastic Algorithm for Decentralized Nonconvex Finite-sum
Optimization [25.21457349137344]
We show a proof to show DEAREST requires at most $mathcal O(+sqrtmnLvarepsilon-2)$ first-order oracle (IFO) calls and $mathcal O(Lvarepsilon-2/sqrt1-lambda_W)$ communication rounds.
arXiv Detail & Related papers (2022-10-25T11:37:11Z) - Nearly Optimal Algorithms for Level Set Estimation [21.83736847203543]
We provide a new approach to the level set estimation problem by relating it to recent adaptive experimental design methods for linear bandits.
We show that our bounds are nearly optimal, namely, our upper bounds match existing lower bounds for threshold linear bandits.
arXiv Detail & Related papers (2021-11-02T17:45:02Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Hybrid Stochastic-Deterministic Minibatch Proximal Gradient:
Less-Than-Single-Pass Optimization with Nearly Optimal Generalization [83.80460802169999]
We show that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
For loss factors, we prove that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
arXiv Detail & Related papers (2020-09-18T02:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.