Controlling Large Electric Vehicle Charging Stations via User Behavior Modeling and Stochastic Programming
- URL: http://arxiv.org/abs/2402.13224v4
- Date: Wed, 13 Nov 2024 14:54:18 GMT
- Title: Controlling Large Electric Vehicle Charging Stations via User Behavior Modeling and Stochastic Programming
- Authors: Alban Puech, Tristan Rigaut, William Templier, Maud Tournoud,
- Abstract summary: This paper introduces an Electric Vehicle Charging Station model that incorporates real-world constraints.
We propose two Multi-Stage Programming approaches that leverage user-provided information.
A user's behavior model based on a sojourn-time-dependent process enhances cost reduction while maintaining customer satisfaction.
- Score: 0.0
- License:
- Abstract: This paper introduces an Electric Vehicle Charging Station (EVCS) model that incorporates real-world constraints, such as slot power limitations, contract threshold overruns penalties, or early disconnections of electric vehicles (EVs). We propose a formulation of the problem of EVCS control under uncertainty, and implement two Multi-Stage Stochastic Programming approaches that leverage user-provided information, namely, Model Predictive Control and Two-Stage Stochastic Programming. The model addresses uncertainties in charging session start and end times, as well as in energy demand. A user's behavior model based on a sojourn-time-dependent stochastic process enhances cost reduction while maintaining customer satisfaction. The benefits of the two proposed methods are showcased against two baselines over a 22-day simulation using a real-world dataset. The two-stage approach demonstrates robustness against early disconnections by considering a wider range of uncertainty scenarios for optimization. The algorithm prioritizing user satisfaction over electricity cost achieves a 20% and 36% improvement in two user satisfaction metrics compared to an industry-standard baseline. Additionally, the algorithm striking the best balance between cost and user satisfaction exhibits a mere 3% relative cost increase compared to the theoretically optimal baseline - for which the nonanticipativity constraint is relaxed - while attaining 94% and 84% of the user satisfaction performance in the two used satisfaction metrics.
Related papers
- Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - Learning and Optimization for Price-based Demand Response of Electric Vehicle Charging [0.9124662097191375]
We propose a new decision-focused end-to-end framework for PBDR modeling.
We evaluate the effectiveness of our method on a simulation of charging station operation with synthetic PBDR patterns of EV customers.
arXiv Detail & Related papers (2024-04-16T06:39:30Z) - A Perspective of Q-value Estimation on Offline-to-Online Reinforcement
Learning [54.48409201256968]
offline-to-online Reinforcement Learning (O2O RL) aims to improve the performance of offline pretrained policy using only a few online samples.
Most O2O methods focus on the balance between RL objective and pessimism, or the utilization of offline and online samples.
arXiv Detail & Related papers (2023-12-12T19:24:35Z) - SaFormer: A Conditional Sequence Modeling Approach to Offline Safe
Reinforcement Learning [64.33956692265419]
offline safe RL is of great practical relevance for deploying agents in real-world applications.
We present a novel offline safe RL approach referred to as SaFormer.
arXiv Detail & Related papers (2023-01-28T13:57:01Z) - A Deep Reinforcement Learning-Based Charging Scheduling Approach with
Augmented Lagrangian for Electric Vehicle [2.686271754751717]
This paper formulates the EV charging scheduling problem as a constrained Markov decision process (CMDP)
A novel safe off-policy reinforcement learning (RL) approach is proposed in this paper to solve the CMDP.
Comprehensive numerical experiments with real-world electricity price demonstrate that our proposed algorithm can achieve high solution optimality and constraints compliance.
arXiv Detail & Related papers (2022-09-20T14:56:51Z) - Optimized cost function for demand response coordination of multiple EV
charging stations using reinforcement learning [6.37470346908743]
We build on previous research on RL, based on a Markov decision process (MDP) to simultaneously coordinate multiple charging stations.
We propose an improved cost function that essentially forces the learned control policy to always fulfill any charging demand that does not offer flexibility.
We rigorously compare the newly proposed batch RL fitted Q-iteration implementation with the original (costly) one, using real-world data.
arXiv Detail & Related papers (2022-03-03T11:22:27Z) - Safe Model-based Off-policy Reinforcement Learning for Eco-Driving in
Connected and Automated Hybrid Electric Vehicles [3.5259944260228977]
This work proposes a Safe Off-policy Model-Based Reinforcement Learning algorithm for the eco-driving problem.
The proposed algorithm leads to a policy with a higher average speed and a better fuel economy compared to the model-free agent.
arXiv Detail & Related papers (2021-05-25T03:41:29Z) - Regret-Optimal Filtering [57.51328978669528]
We consider the problem of filtering in linear state-space models through the lens of regret optimization.
We formulate a novel criterion for filter design based on the concept of regret between the estimation error energy of a clairvoyant estimator.
We show that the regret-optimal estimator can be easily implemented by solving three Riccati equations and a single Lyapunov equation.
arXiv Detail & Related papers (2021-01-25T19:06:52Z) - A Data-Driven Machine Learning Approach for Consumer Modeling with Load
Disaggregation [1.6058099298620423]
We propose a generic class of data-driven semiparametric models derived from consumption data of residential consumers.
In the first stage, disaggregation of the load into fixed and shiftable components is accomplished by means of a hybrid algorithm.
In the second stage, the model parameters are estimated using an L2-norm, epsilon-insensitive regression approach.
arXiv Detail & Related papers (2020-11-04T13:36:11Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.