Potential and Challenges of Model Editing for Social Debiasing
- URL: http://arxiv.org/abs/2402.13462v1
- Date: Wed, 21 Feb 2024 01:35:26 GMT
- Title: Potential and Challenges of Model Editing for Social Debiasing
- Authors: Jianhao Yan, Futing Wang, Yafu Li, Yue Zhang
- Abstract summary: Large language models (LLMs) trained on vast corpora suffer from inevitable stereotype biases.
Mitigating these biases with fine-tuning could be both costly and data-hungry.
Model editing methods, which focus on modifying LLMs in a post-hoc manner, are of great potential to address debiasing.
- Score: 20.186721346693577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) trained on vast corpora suffer from inevitable
stereotype biases. Mitigating these biases with fine-tuning could be both
costly and data-hungry. Model editing methods, which focus on modifying LLMs in
a post-hoc manner, are of great potential to address debiasing. However, it
lacks a comprehensive study that facilitates both internal and external model
editing methods, supports various bias types, as well as understands the pros
and cons of applying editing methods to stereotypical debiasing. To mitigate
this gap, we carefully formulate social debiasing into an editing problem and
benchmark seven existing model editing algorithms on stereotypical debiasing,
i.e., debias editing. Our findings in three scenarios reveal both the potential
and challenges of debias editing: (1) Existing model editing methods can
effectively preserve knowledge and mitigate biases, while the generalization of
debias effect from edited sentences to semantically equivalent sentences is
limited.(2) Sequential editing highlights the robustness of SERAC (Mitchell et
al. 2022b), while internal editing methods degenerate with the number of edits.
(3) Model editing algorithms achieve generalization towards unseen biases both
within the same type and from different types. In light of these findings, we
further propose two simple but effective methods to improve debias editing, and
experimentally show the effectiveness of the proposed methods.
Related papers
- Should We Really Edit Language Models? On the Evaluation of Edited Language Models [15.63231238452797]
Existing editing methods lead to inevitable performance deterioration on general benchmarks.
Instruction-tuned models are more robust to editing, showing less performance drop on general knowledge after editing.
Our findings indicate that current editing methods are only suitable for small-scale knowledge updates within language models.
arXiv Detail & Related papers (2024-10-24T14:36:48Z) - Better Call SAUL: Fluent and Consistent Language Model Editing with Generation Regularization [48.07144492109635]
Large language models need to be updated regularly.
Model editing is challenging as it might also affect knowledge that is unrelated to the new data.
We propose SAUL, a streamlined model editing method that uses sentence concatenation with augmented random facts for generation regularization.
arXiv Detail & Related papers (2024-10-03T12:28:13Z) - Fundamental Problems With Model Editing: How Should Rational Belief Revision Work in LLMs? [61.68363765350178]
This paper critiques the standard formulation of the model editing problem and proposes a formal testbed for model editing research.
We first describe 12 open problems with model editing, based on challenges with (1) defining the problem, (2) developing benchmarks, and (3) assuming LLMs have editable beliefs in the first place.
Next, we introduce a semi-synthetic dataset for model editing based on Wikidata, where we can evaluate edits against labels given by an idealized Bayesian agent.
arXiv Detail & Related papers (2024-06-27T17:33:03Z) - Is Bigger Edit Batch Size Always Better? -- An Empirical Study on Model Editing with Llama-3 [2.569159339315845]
This study presents a targeted model editing analysis focused on the latest large language model, Llama-3.
We identify the most effective layers for targeted edits through an evaluation that encompasses up to 4096 edits.
arXiv Detail & Related papers (2024-05-01T17:50:37Z) - "Flex Tape Can't Fix That": Bias and Misinformation in Edited Language Models [17.77377809345631]
We investigate how model editing methods unexpectedly amplify model biases post-edit.
Specifically, we focus on biases with respect to demographic attributes such as race, geographic origin, and gender.
We find that edited models exhibit, to various degrees, more biased behavior as they become less confident in attributes for Asian, African, and South American subjects.
arXiv Detail & Related papers (2024-02-29T23:11:55Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
Even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
benchmarking Large Language Models after each edit is impractically time-consuming and resource-intensive.
We have utilized GPT-3.5 to develop a new dataset, HardEdit, based on hard cases.
arXiv Detail & Related papers (2024-02-15T01:50:38Z) - Model Editing Harms General Abilities of Large Language Models: Regularization to the Rescue [122.20016030723043]
We evaluate the side effects of model editing on large language models (LLMs)
Our analysis reveals that the side effects are caused by model editing altering the original model weights excessively.
To mitigate this, a method named RECT is proposed to regularize the edit update weights.
arXiv Detail & Related papers (2024-01-09T18:03:15Z) - DUnE: Dataset for Unified Editing [3.7346004746366384]
We introduce DUnE-an editing benchmark where edits are natural language sentences.
We show that retrieval-augmented language modeling can outperform specialized editing techniques.
arXiv Detail & Related papers (2023-11-27T18:56:14Z) - Editing 3D Scenes via Text Prompts without Retraining [80.57814031701744]
DN2N is a text-driven editing method that allows for the direct acquisition of a NeRF model with universal editing capabilities.
Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images.
Our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer.
arXiv Detail & Related papers (2023-09-10T02:31:50Z) - Memory-Based Model Editing at Scale [102.28475739907498]
Existing model editors struggle to accurately model an edit's intended scope.
We propose Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model (SERAC)
SERAC stores edits in an explicit memory and learns to reason over them to modulate the base model's predictions as needed.
arXiv Detail & Related papers (2022-06-13T23:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.