GradSafe: Detecting Jailbreak Prompts for LLMs via Safety-Critical Gradient Analysis
- URL: http://arxiv.org/abs/2402.13494v2
- Date: Wed, 29 May 2024 21:45:35 GMT
- Title: GradSafe: Detecting Jailbreak Prompts for LLMs via Safety-Critical Gradient Analysis
- Authors: Yueqi Xie, Minghong Fang, Renjie Pi, Neil Gong,
- Abstract summary: We propose GradSafe, which effectively detects jailbreak prompts by scrutinizing the gradients of safety-critical parameters in LLMs.
Our method is grounded in a pivotal observation: the gradients of an LLM's loss for jailbreak prompts paired with compliance response exhibit similar patterns on certain safety-critical parameters.
We show that GradSafe, applied to Llama-2 without further training, outperforms Llama Guard, despite its extensive finetuning with a large dataset.
- Score: 9.225253610200207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) face threats from jailbreak prompts. Existing methods for detecting jailbreak prompts are primarily online moderation APIs or finetuned LLMs. These strategies, however, often require extensive and resource-intensive data collection and training processes. In this study, we propose GradSafe, which effectively detects jailbreak prompts by scrutinizing the gradients of safety-critical parameters in LLMs. Our method is grounded in a pivotal observation: the gradients of an LLM's loss for jailbreak prompts paired with compliance response exhibit similar patterns on certain safety-critical parameters. In contrast, safe prompts lead to different gradient patterns. Building on this observation, GradSafe analyzes the gradients from prompts (paired with compliance responses) to accurately detect jailbreak prompts. We show that GradSafe, applied to Llama-2 without further training, outperforms Llama Guard, despite its extensive finetuning with a large dataset, in detecting jailbreak prompts. This superior performance is consistent across both zero-shot and adaptation scenarios, as evidenced by our evaluations on ToxicChat and XSTest. The source code is available at https://github.com/xyq7/GradSafe.
Related papers
- Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction [32.04296423547049]
Large Language Models (LLMs) are widely applied in various domains.
We propose the Rewrite to Jailbreak (R2J) approach, a transferable black-box jailbreak method to attack LLMs.
arXiv Detail & Related papers (2025-02-16T11:43:39Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Token Highlighter: Inspecting and Mitigating Jailbreak Prompts for Large Language Models [61.916827858666906]
Large Language Models (LLMs) are increasingly being integrated into services such as ChatGPT to provide responses to user queries.
This paper proposes a method called Token Highlighter to inspect and mitigate the potential jailbreak threats in the user query.
arXiv Detail & Related papers (2024-12-24T05:10:02Z) - LIAR: Leveraging Inference Time Alignment (Best-of-N) to Jailbreak LLMs in Seconds [98.20826635707341]
Jailbreak attacks expose vulnerabilities in safety-aligned LLMs by eliciting harmful outputs through carefully crafted prompts.<n>We frame jailbreaks as inference-time misalignment and introduce LIAR, a fast, black-box, best-of-$N$ sampling attack requiring no training.<n>We also introduce a theoretical "safety net against jailbreaks" metric to quantify safety alignment strength and derive suboptimality bounds.
arXiv Detail & Related papers (2024-12-06T18:02:59Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
We propose a jailbreak attack defense strategy based on a Hidden State Filter (HSF)
HSF enables the model to preemptively identify and reject adversarial inputs before the inference process begins.
It significantly reduces the success rate of jailbreak attacks while minimally impacting responses to benign user queries.
arXiv Detail & Related papers (2024-08-31T06:50:07Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks [89.54736699767315]
We conjecture that directly unlearn the harmful knowledge in the LLM can be a more effective way to defend against jailbreak attacks.
Our solution reduced the Attack Success Rate (ASR) in Vicuna-7B from 82.6% to 7.7% on out-of-distribution (OOD) harmful questions.
This significantly outperforms Llama2-7B-Chat, which is fine-tuned on about 0.1M safety alignment samples but still has an ASR of 21.9% even under the help of an additional safety system prompt.
arXiv Detail & Related papers (2024-07-03T07:14:05Z) - WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models [66.34505141027624]
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics.
WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks.
arXiv Detail & Related papers (2024-06-26T17:31:22Z) - How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States [65.45603614354329]
Large language models (LLMs) rely on safety alignment to avoid responding to malicious user inputs.
Jailbreak can circumvent safety guardrails, resulting in LLMs generating harmful content.
We employ weak classifiers to explain LLM safety through the intermediate hidden states.
arXiv Detail & Related papers (2024-06-09T05:04:37Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer.
To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback.
Recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails.
This paper proposes a method called Gradient Cuff to detect jailbreak attempts.
arXiv Detail & Related papers (2024-03-01T03:29:54Z) - LLMs Can Defend Themselves Against Jailbreaking in a Practical Manner: A
Vision Paper [16.078682415975337]
Jailbreaking is an emerging adversarial attack that bypasses the safety alignment deployed in off-the-shelf large language models (LLMs)
This paper proposes a lightweight yet practical defense called SELFDEFEND.
It can defend against all existing jailbreak attacks with minimal delay for jailbreak prompts and negligible delay for normal user prompts.
arXiv Detail & Related papers (2024-02-24T05:34:43Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
We study 13 cutting-edge jailbreak methods from four categories, 160 questions from 16 violation categories, and six popular LLMs.
Our experimental results demonstrate that the optimized jailbreak prompts consistently achieve the highest attack success rates.
We discuss the trade-off between the attack performance and efficiency, as well as show that the transferability of the jailbreak prompts is still viable.
arXiv Detail & Related papers (2024-02-08T13:42:50Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.