LLMs Meet Long Video: Advancing Long Video Question Answering with An Interactive Visual Adapter in LLMs
- URL: http://arxiv.org/abs/2402.13546v2
- Date: Sun, 25 Aug 2024 11:23:50 GMT
- Title: LLMs Meet Long Video: Advancing Long Video Question Answering with An Interactive Visual Adapter in LLMs
- Authors: Yunxin Li, Xinyu Chen, Baotain Hu, Min Zhang,
- Abstract summary: Long video understanding is a significant and ongoing challenge in the intersection of multimedia and artificial intelligence.
We present an Interactive Visual Adapter (IVA) within large language models (LLMs) to enhance interaction with fine-grained visual elements.
- Score: 22.696090318037925
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Long video understanding is a significant and ongoing challenge in the intersection of multimedia and artificial intelligence. Employing large language models (LLMs) for comprehending video becomes an emerging and promising method. However, this approach incurs high computational costs due to the extensive array of video tokens, experiences reduced visual clarity as a consequence of token aggregation, and confronts challenges arising from irrelevant visual tokens while answering video-related questions. To alleviate these issues, we present an Interactive Visual Adapter (IVA) within LLMs, designed to enhance interaction with fine-grained visual elements. Specifically, we first transform long videos into temporal video tokens via leveraging a visual encoder alongside a pretrained causal transformer, then feed them into LLMs with the video instructions. Subsequently, we integrated IVA, which contains a lightweight temporal frame selector and a spatial feature interactor, within the internal blocks of LLMs to capture instruction-aware and fine-grained visual signals. Consequently, the proposed video-LLM facilitates a comprehensive understanding of long video content through appropriate long video modeling and precise visual interactions. We conducted extensive experiments on nine video understanding benchmarks and experimental results show that our interactive visual adapter significantly improves the performance of video LLMs on long video QA tasks. Ablation studies further verify the effectiveness of IVA in understanding long and short video.
Related papers
- AdaCM$^2$: On Understanding Extremely Long-Term Video with Adaptive Cross-Modality Memory Reduction [10.579335027350263]
AdaCM$2$ is an adaptive cross-modality memory reduction approach to video-text alignment on video streams.
It achieves a 4.5% improvement across multiple tasks in the LVU dataset with a GPU memory consumption reduction of up to 65%.
arXiv Detail & Related papers (2024-11-19T18:04:13Z) - VideoGLaMM: A Large Multimodal Model for Pixel-Level Visual Grounding in Videos [58.765796160750504]
VideoGLaMM is a new model for fine-grained pixel-level grounding in videos based on user-provided textual inputs.
The architecture is trained to synchronize both spatial and temporal elements of video content with textual instructions.
Experimental results show that our model consistently outperforms existing approaches across all three tasks.
arXiv Detail & Related papers (2024-11-07T17:59:27Z) - Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
We present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs.
Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks.
arXiv Detail & Related papers (2024-10-14T12:35:12Z) - Interpolating Video-LLMs: Toward Longer-sequence LMMs in a Training-free Manner [53.671484175063995]
Video-LLMs are pre-trained to process short videos, limiting their broader application for understanding longer video content.
We introduce an alternative video token rearrangement technique that circumvents limitations imposed by the fixed video encoder and alignment projector.
arXiv Detail & Related papers (2024-09-19T17:59:55Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Video Understanding with Large Language Models: A Survey [97.29126722004949]
Given the remarkable capabilities of large language models (LLMs) in language and multimodal tasks, this survey provides a detailed overview of recent advancements in video understanding.
The emergent capabilities Vid-LLMs are surprisingly advanced, particularly their ability for open-ended multi-granularity reasoning.
This survey presents a comprehensive study of the tasks, datasets, benchmarks, and evaluation methodologies for Vid-LLMs.
arXiv Detail & Related papers (2023-12-29T01:56:17Z) - Retrieval-based Video Language Model for Efficient Long Video Question
Answering [39.474247695753725]
We introduce a retrieval-based video language model (R-VLM) for efficient and interpretable long video QA.
Specifically, given a question (query) and a long video, our model identifies and selects the most relevant $K$ video chunks.
Our experimental results validate the effectiveness of our framework for comprehending long videos.
arXiv Detail & Related papers (2023-12-08T09:48:36Z) - VTimeLLM: Empower LLM to Grasp Video Moments [43.51980030572101]
Large language models (LLMs) have shown remarkable text understanding capabilities.
Video LLMs can only provide a coarse description of the entire video.
We propose VTimeLLM, a novel Video LLM for fine-grained video moment understanding.
arXiv Detail & Related papers (2023-11-30T10:49:56Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - VideoLLM: Modeling Video Sequence with Large Language Models [70.32832021713864]
Existing video understanding models are often task-specific and lack a comprehensive capability of handling diverse tasks.
We propose a novel framework called VideoLLM that leverages the sequence reasoning capabilities of pre-trained LLMs.
VideoLLM incorporates a carefully designed Modality and Semantic Translator, which convert inputs from various modalities into a unified token sequence.
arXiv Detail & Related papers (2023-05-22T17:51:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.