Analysis of Bootstrap and Subsampling in High-dimensional Regularized Regression
- URL: http://arxiv.org/abs/2402.13622v2
- Date: Fri, 01 Nov 2024 13:33:58 GMT
- Title: Analysis of Bootstrap and Subsampling in High-dimensional Regularized Regression
- Authors: Lucas Clarté, Adrien Vandenbroucque, Guillaume Dalle, Bruno Loureiro, Florent Krzakala, Lenka Zdeborová,
- Abstract summary: We investigate popular resampling methods for estimating the uncertainty of statistical models.
We provide a tight description of the biases and variances estimated by these methods in the context of generalized linear models.
- Score: 29.57766164934947
- License:
- Abstract: We investigate popular resampling methods for estimating the uncertainty of statistical models, such as subsampling, bootstrap and the jackknife, and their performance in high-dimensional supervised regression tasks. We provide a tight asymptotic description of the biases and variances estimated by these methods in the context of generalized linear models, such as ridge and logistic regression, taking the limit where the number of samples $n$ and dimension $d$ of the covariates grow at a comparable fixed rate $\alpha\!=\! n/d$. Our findings are three-fold: i) resampling methods are fraught with problems in high dimensions and exhibit the double-descent-like behavior typical of these situations; ii) only when $\alpha$ is large enough do they provide consistent and reliable error estimations (we give convergence rates); iii) in the over-parametrized regime $\alpha\!<\!1$ relevant to modern machine learning practice, their predictions are not consistent, even with optimal regularization.
Related papers
- Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
We investigate the behavior of a general class of regularized convex classifiers in the high-dimensional limit.
Our focus is on the generalization error and variable selection properties of the estimators.
arXiv Detail & Related papers (2024-10-25T19:58:36Z) - Retire: Robust Expectile Regression in High Dimensions [3.9391041278203978]
Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data.
We propose and study (penalized) robust expectile regression (retire)
We show that the proposed procedure can be efficiently solved by a semismooth Newton coordinate descent algorithm.
arXiv Detail & Related papers (2022-12-11T18:03:12Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
We propose and analyse a reduced-rank method for solving least-squares regression problems with infinite dimensional output.
We derive learning bounds for our method, and study under which setting statistical performance is improved in comparison to full-rank method.
arXiv Detail & Related papers (2022-11-16T15:07:00Z) - Lazy Estimation of Variable Importance for Large Neural Networks [22.95405462638975]
We propose a fast and flexible method for approximating the reduced model with important inferential guarantees.
We demonstrate our method is fast and accurate under several data-generating regimes, and we demonstrate its real-world applicability on a seasonal climate forecasting example.
arXiv Detail & Related papers (2022-07-19T06:28:17Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - The Generalized Lasso with Nonlinear Observations and Generative Priors [63.541900026673055]
We make the assumption of sub-Gaussian measurements, which is satisfied by a wide range of measurement models.
We show that our result can be extended to the uniform recovery guarantee under the assumption of a so-called local embedding property.
arXiv Detail & Related papers (2020-06-22T16:43:35Z) - Dimension Independent Generalization Error by Stochastic Gradient
Descent [12.474236773219067]
We present a theory on the generalization error of descent (SGD) solutions for both and locally convex loss functions.
We show that the generalization error does not depend on the $p$ dimension or depends on the low effective $p$logarithmic factor.
arXiv Detail & Related papers (2020-03-25T03:08:41Z) - Interpolating Predictors in High-Dimensional Factor Regression [2.1055643409860743]
This work studies finite-sample properties of the risk of the minimum-norm interpolating predictor in high-dimensional regression models.
We show that the min-norm interpolating predictor can have similar risk to predictors based on principal components regression and ridge regression, and can improve over LASSO based predictors, in the high-dimensional regime.
arXiv Detail & Related papers (2020-02-06T22:08:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.