Geometry-Informed Neural Networks
- URL: http://arxiv.org/abs/2402.14009v3
- Date: Mon, 14 Oct 2024 14:15:05 GMT
- Title: Geometry-Informed Neural Networks
- Authors: Arturs Berzins, Andreas Radler, Eric Volkmann, Sebastian Sanokowski, Sepp Hochreiter, Johannes Brandstetter,
- Abstract summary: We introduce geometry-informed neural networks (GINNs)
GINNs are a framework for training shape-generative neural fields without data.
We apply GINNs to several validation problems and a realistic 3D engineering design problem.
- Score: 15.27249535281444
- License:
- Abstract: Geometry is a ubiquitous tool in computer graphics, design, and engineering. However, the lack of large shape datasets limits the application of state-of-the-art supervised learning methods and motivates the exploration of alternative learning strategies. To this end, we introduce geometry-informed neural networks (GINNs) -- a framework for training shape-generative neural fields without data by leveraging user-specified design requirements in the form of objectives and constraints. By adding diversity as an explicit constraint, GINNs avoid mode-collapse and can generate multiple diverse solutions, often required in geometry tasks. Experimentally, we apply GINNs to several validation problems and a realistic 3D engineering design problem, showing control over geometrical and topological properties, such as surface smoothness or the number of holes. These results demonstrate the potential of training shape-generative models without data, paving the way for new generative design approaches without large datasets.
Related papers
- Geometry Distributions [51.4061133324376]
We propose a novel geometric data representation that models geometry as distributions.
Our approach uses diffusion models with a novel network architecture to learn surface point distributions.
We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity.
arXiv Detail & Related papers (2024-11-25T04:06:48Z) - Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations [13.208548352092455]
For partial differential equations on domains of arbitrary shapes, existing works of neural operators attempt to learn a mapping from geometries to solutions.
We propose reference neural operators (RNO) to learn the smooth dependence of solutions on geometric deformations.
RNO outperforms baseline models in accuracy by a large lead and achieves up to 80% error reduction.
arXiv Detail & Related papers (2024-05-27T06:50:17Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
This paper presents a survey of data structures, models, and applications related to geometric GNNs.
We provide a unified view of existing models from the geometric message passing perspective.
We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
regression of physical problems under non-parameterized geometrical
variability [0.30693357740321775]
We propose a machine learning method that do not rely on graph neural networks.
The proposed methodology can easily deal with large meshes without the need for explicit shape parameterization.
arXiv Detail & Related papers (2023-05-22T09:50:15Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
We study continual learning from a novel perspective by exploring data geometry for the non-stationary stream of data.
Our method dynamically expands the geometry of the underlying space to match growing geometric structures induced by new data.
Experiments show that our method achieves better performance than baseline methods designed in Euclidean space.
arXiv Detail & Related papers (2023-04-08T06:35:25Z) - Topology optimization with physics-informed neural networks: application
to noninvasive detection of hidden geometries [0.40611352512781856]
We introduce a topology optimization framework based on PINNs for detecting hidden geometrical structures.
We validate our framework by detecting the number, locations, and shapes of hidden voids and inclusions in linear and nonlinear elastic bodies.
arXiv Detail & Related papers (2023-03-13T12:44:32Z) - Neural Template: Topology-aware Reconstruction and Disentangled
Generation of 3D Meshes [52.038346313823524]
This paper introduces a novel framework called DTNet for 3D mesh reconstruction and generation via Disentangled Topology.
Our method is able to produce high-quality meshes, particularly with diverse topologies, as compared with the state-of-the-art methods.
arXiv Detail & Related papers (2022-06-10T08:32:57Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.