E2USD: Efficient-yet-effective Unsupervised State Detection for Multivariate Time Series
- URL: http://arxiv.org/abs/2402.14041v6
- Date: Mon, 27 May 2024 08:14:20 GMT
- Title: E2USD: Efficient-yet-effective Unsupervised State Detection for Multivariate Time Series
- Authors: Zhichen Lai, Huan Li, Dalin Zhang, Yan Zhao, Weizhu Qian, Christian S. Jensen,
- Abstract summary: We propose E2Usd that enables efficient-yet-accurate unsupervised state detection.
E2Usd exploits a Fast Fourier Transform-based Time Series and a Decomposed Dual-view Embedding Module.
We also propose a False Negative Cancellation Contrastive Learning method to counteract the effects of false negatives.
- Score: 18.02694168117277
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cyber-physical system sensors emit multivariate time series (MTS) that monitor physical system processes. Such time series generally capture unknown numbers of states, each with a different duration, that correspond to specific conditions, e.g., "walking" or "running" in human-activity monitoring. Unsupervised identification of such states facilitates storage and processing in subsequent data analyses, as well as enhances result interpretability. Existing state-detection proposals face three challenges. First, they introduce substantial computational overhead, rendering them impractical in resourceconstrained or streaming settings. Second, although state-of-the-art (SOTA) proposals employ contrastive learning for representation, insufficient attention to false negatives hampers model convergence and accuracy. Third, SOTA proposals predominantly only emphasize offline non-streaming deployment, we highlight an urgent need to optimize online streaming scenarios. We propose E2Usd that enables efficient-yet-accurate unsupervised MTS state detection. E2Usd exploits a Fast Fourier Transform-based Time Series Compressor (fftCompress) and a Decomposed Dual-view Embedding Module (ddEM) that together encode input MTSs at low computational overhead. Additionally, we propose a False Negative Cancellation Contrastive Learning method (fnccLearning) to counteract the effects of false negatives and to achieve more cluster-friendly embedding spaces. To reduce computational overhead further in streaming settings, we introduce Adaptive Threshold Detection (adaTD). Comprehensive experiments with six baselines and six datasets offer evidence that E2Usd is capable of SOTA accuracy at significantly reduced computational overhead.
Related papers
- ORCHID: Streaming Threat Detection over Versioned Provenance Graphs [11.783370157959968]
We present ORCHID, a novel Prov-IDS that performs fine-grained detection of process-level threats over a real time event stream.
ORCHID takes advantage of the unique immutable properties of a versioned provenance graphs to iteratively embed the entire graph in a sequential RNN model.
We evaluate ORCHID on four public datasets, including DARPA TC, to show that ORCHID can provide competitive classification performance.
arXiv Detail & Related papers (2024-08-23T19:44:40Z) - Energy-Efficient Edge Learning via Joint Data Deepening-and-Prefetching [9.468399367975984]
We propose a novel offloading architecture called joint data deepening-and-prefetching (JD2P)
JD2P is feature-by-feature offloading comprising two key techniques.
We evaluate the effectiveness of JD2P through experiments using the MNIST dataset.
arXiv Detail & Related papers (2024-02-19T08:12:47Z) - NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition [89.84188594758588]
A novel Non-saliency Suppression Network (NSNet) is proposed to suppress the responses of non-salient frames.
NSNet achieves the state-of-the-art accuracy-efficiency trade-off and presents a significantly faster (2.44.3x) practical inference speed than state-of-the-art methods.
arXiv Detail & Related papers (2022-07-21T09:41:22Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Adaptive Test-Time Augmentation for Low-Power CPU [3.5473686344971416]
Test-Time Augmentation (TTA) techniques aim to alleviate such common side effect at inference-time.
We propose AdapTTA, an adaptive implementation of TTA that controls the number of feed-forward passes dynamically.
Experimental results on state-of-the-art ConvNets for image classification deployed on a commercial ARM Cortex-A CPU demonstrate AdapTTA reaches remarkable latency savings.
arXiv Detail & Related papers (2021-05-13T10:50:13Z) - Higher Performance Visual Tracking with Dual-Modal Localization [106.91097443275035]
Visual Object Tracking (VOT) has synchronous needs for both robustness and accuracy.
We propose a dual-modal framework for target localization, consisting of robust localization suppressingors via ONR and the accurate localization attending to the target center precisely via OFC.
arXiv Detail & Related papers (2021-03-18T08:47:56Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
We propose an efficient two-stream deep learning architecture leveraging Separable Convolutional LSTM (SepConvLSTM) and pre-trained MobileNet.
SepConvLSTM is constructed by replacing convolution operation at each gate of ConvLSTM with a depthwise separable convolution.
Our model outperforms the accuracy on the larger and more challenging RWF-2000 dataset by more than a 2% margin.
arXiv Detail & Related papers (2021-02-21T12:01:48Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Cascaded Regression Tracking: Towards Online Hard Distractor
Discrimination [202.2562153608092]
We propose a cascaded regression tracker with two sequential stages.
In the first stage, we filter out abundant easily-identified negative candidates.
In the second stage, a discrete sampling based ridge regression is designed to double-check the remaining ambiguous hard samples.
arXiv Detail & Related papers (2020-06-18T07:48:01Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.