Motion Code: Robust Time Series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning
- URL: http://arxiv.org/abs/2402.14081v3
- Date: Mon, 25 Nov 2024 18:57:35 GMT
- Title: Motion Code: Robust Time Series Classification and Forecasting via Sparse Variational Multi-Stochastic Processes Learning
- Authors: Chandrajit Bajaj, Minh Nguyen,
- Abstract summary: We propose a novel framework that views each time series as a realization of a continuous-time process.
This mathematical approach captures dependencies across timestamps and detects hidden, time-varying signals within the noise.
Experiments on noisy datasets, including real-world Parkinson's disease sensor tracking, demonstrate Motion Code's strong performance against established benchmarks.
- Score: 3.2857981869020327
- License:
- Abstract: Despite extensive research, time series classification and forecasting on noisy data remain highly challenging. The main difficulties lie in finding suitable mathematical concepts to describe time series and effectively separate noise from the true signals. Unlike traditional methods treating time series as static vectors or fixed sequences, we propose a novel framework that views each time series, regardless of length, as a realization of a continuous-time stochastic process. This mathematical approach captures dependencies across timestamps and detects hidden, time-varying signals within the noise. However, real-world data often involves multiple distinct dynamics, making it insufficient to model the entire process with a single stochastic model. To address this, we assign each dynamic a unique signature vector and introduce the concept of "most informative timestamps" to infer a sparse approximation of the individual dynamics from these vectors. The resulting model, called Motion Code, includes parameters that fully capture diverse underlying dynamics in an integrated manner, enabling simultaneous classification and forecasting of time series. Extensive experiments on noisy datasets, including real-world Parkinson's disease sensor tracking, demonstrate Motion Code's strong performance against established benchmarks for time series classification and forecasting.
Related papers
- TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Feature Programming for Multivariate Time Series Prediction [7.0220697993232]
We introduce the concept of programmable feature engineering for time series modeling.
We propose a feature programming framework that generates large amounts of predictive features for noisy time series.
arXiv Detail & Related papers (2023-06-09T20:46:55Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - DCSF: Deep Convolutional Set Functions for Classification of
Asynchronous Time Series [5.339109578928972]
Asynchronous Time Series is a time series where all the channels are observed asynchronously-independently.
This paper proposes a novel framework, that is highly scalable and memory efficient, for the asynchronous time series classification task.
We explore convolutional neural networks, which are well researched for the closely related problem-classification of regularly sampled and fully observed time series.
arXiv Detail & Related papers (2022-08-24T08:47:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding [8.45908939323268]
We propose a self-supervised framework for learning generalizable representations for non-stationary time series.
Our motivation stems from the medical field, where the ability to model the dynamic nature of time series data is especially valuable.
arXiv Detail & Related papers (2021-06-01T19:53:24Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.