Irregular Bloch Zener oscillations in two-dimensional flat-band Dirac materials
- URL: http://arxiv.org/abs/2402.14243v2
- Date: Wed, 21 Aug 2024 23:47:04 GMT
- Title: Irregular Bloch Zener oscillations in two-dimensional flat-band Dirac materials
- Authors: Li-Li Ye, Ying-Cheng Lai,
- Abstract summary: Landau-Zener transition (LZT) and Bloch-Zener oscillations can occur when a static electrical field is applied to a 2D Dirac material.
We demonstrate that the adiabatic-impulse model describing Landau-Zener-Stuckelberg interferometry can be exploited to calculate the phases.
The degree of irregularity of Bloch-Zener oscillations can be harnessed by selecting the morphology pattern, which is potentially experimentally realizable.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When a static electrical field is applied to a two-dimensional (2D) Dirac material, Landau-Zener transition (LZT) and Bloch-Zener oscillations can occur. Employing alpha-T3 lattices as a paradigm for a broad class of 2D Dirac materials, we uncover two phenomena. First, due to the arbitrarily small energy gaps near a Dirac point that make it more likely for LZTs to occur than in other regions of the Brillouin zone, the distribution of differential LZT probability in the momentum space can form a complicated morphological pattern. Second, a change in the LZT morphology as induced by a mutual switching of the two distinct Dirac points can lead to irregular Bloch-Zener oscillations characterized by a non-smooth behavior in the time evolution of the electrical current density associated with the oscillation. These phenomena are due to mixed interference of quantum states in multiple bands modulated by the geometric and dynamic phases. We demonstrate that the adiabatic-impulse model describing Landau-Zener-Stuckelberg interferometry can be exploited to calculate the phases, due to the equivalence between the alpha-T3 lattice subject to a constant electrical field and strongly periodically driven two- or three-level systems. The degree of irregularity of Bloch-Zener oscillations can be harnessed by selecting the morphology pattern, which is potentially experimentally realizable.
Related papers
- Bloch Oscillations, Landau-Zener Transition, and Topological Phase
Evolution in a Pendula Array [0.0]
We study the dynamics of a one-dimensional array of pendula with a mild spatial gradient in their self-frequency.
We map their dynamics to the topological Su-Schrieffer-Heeger model of charged quantum particles on a lattice with alternating hopping rates in an external electric field.
arXiv Detail & Related papers (2023-05-30T20:01:52Z) - Dynamics of dissipative Landau-Zener transitions in an anisotropic
three-level system [12.391817054644934]
We investigate the dynamics of Landau-Zener transitions in an anisotropic, dissipative three-level model (3-LZM)
A non-monotonic relationship exists between the Landau-Zener transition probability and the phonon coupling strength when the 3-LZM is driven by a linear external field.
arXiv Detail & Related papers (2023-03-14T21:03:09Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Manipulating Generalized Dirac Cones In Quantum Metasurfaces [68.8204255655161]
We consider a collection of single quantum emitters arranged in a honeycomb lattice with subwavelength periodicity.
We show that introducing uniaxial anisotropy in the lattice results in modified dispersion relations.
arXiv Detail & Related papers (2022-03-21T17:59:58Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Localization to delocalization transition in a double stranded helical
geometry: Effects of conformation, transverse electric field and dynamics [0.0]
Conformational effect on electronic localization is investigated for the first time considering a double-stranded helical geometry subjected to an electric field.
In the presence of electric field the DSHG behaves like a correlated disordered system whose site potentials are modulated in a cosine form.
The interplay between the helical geometry and electric field may open up several notable features of electronic localization.
arXiv Detail & Related papers (2021-09-28T04:19:26Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Dynamical signatures of point-gap Weyl semimetal [0.0]
We consider a model where a pair of Weyl points reside on the imaginary axis of the complex energy plane, opening up a point gap characterized by a topological invariant.
We predict a time-dependent current flow along the magnetic field in the absence of an electric field, in sharp contrast to the current driven by the chiral anomaly.
Second, we reveal a novel type of boundary-skin mode in the wire geometry which becomes localized at two corners of the wire cross section.
arXiv Detail & Related papers (2021-07-05T16:54:07Z) - Ultrafast and Strong-Field Physics in Graphene-Like Crystals: Bloch Band
Topology and High-Harmonic Generation [0.0]
This letter introduces a theoretical framework for the nonperturbative electron dynamics in two-dimensional (2D) crystalline solids induced by the few-cycle and strong-field optical lasers.
In our theoretical experiment on 2D materials in the strong-field optical regime, we show that Bloch band topology and broken symmetry manifest themselves in several ways.
arXiv Detail & Related papers (2021-01-10T22:32:44Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.