On the Tip of the Tongue: Analyzing Conceptual Representation in Large
Language Models with Reverse-Dictionary Probe
- URL: http://arxiv.org/abs/2402.14404v2
- Date: Mon, 26 Feb 2024 11:40:45 GMT
- Title: On the Tip of the Tongue: Analyzing Conceptual Representation in Large
Language Models with Reverse-Dictionary Probe
- Authors: Ningyu Xu, Qi Zhang, Menghan Zhang, Peng Qian, Xuanjing Huang
- Abstract summary: We use in-context learning to guide the models to generate the term for an object concept implied in a linguistic description.
Experiments suggest that conceptual inference ability as probed by the reverse-dictionary task predicts model's general reasoning performance.
- Score: 36.65834065044746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probing and enhancing large language models' reasoning capacity remains a
crucial open question. Here we re-purpose the reverse dictionary task as a case
study to probe LLMs' capacity for conceptual inference. We use in-context
learning to guide the models to generate the term for an object concept implied
in a linguistic description. Models robustly achieve high accuracy in this
task, and their representation space encodes information about object
categories and fine-grained features. Further experiments suggest that the
conceptual inference ability as probed by the reverse-dictionary task predicts
model's general reasoning performance across multiple benchmarks, despite
similar syntactic generalization behaviors across models. Explorative analyses
suggest that prompting LLMs with description$\Rightarrow$word examples may
induce generalization beyond surface-level differences in task construals and
facilitate models on broader commonsense reasoning problems.
Related papers
- Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
We propose a complete framework for extending concept-based interpretability methods to NLP.
We optimize for features whose existence causes the output predictions to change substantially.
Our method achieves superior results on predictive impact, usability, and faithfulness compared to the baselines.
arXiv Detail & Related papers (2023-05-03T14:48:27Z) - Competence-Based Analysis of Language Models [21.43498764977656]
CALM (Competence-based Analysis of Language Models) is designed to investigate LLM competence in the context of specific tasks.
We develop a new approach for performing causal probing interventions using gradient-based adversarial attacks.
We carry out a case study of CALM using these interventions to analyze and compare LLM competence across a variety of lexical inference tasks.
arXiv Detail & Related papers (2023-03-01T08:53:36Z) - Explaining Large Language Model-Based Neural Semantic Parsers (Student
Abstract) [0.0]
Large language models (LLMs) have demonstrated strong capability in structured prediction tasks such as semantic parsing.
Our work studies different methods for explaining an LLM-based semantic semantic behaviors.
We hope to inspire future research toward better understanding them.
arXiv Detail & Related papers (2023-01-25T16:12:43Z) - Towards explainable evaluation of language models on the semantic
similarity of visual concepts [0.0]
We examine the behavior of high-performing pre-trained language models, focusing on the task of semantic similarity for visual vocabularies.
First, we address the need for explainable evaluation metrics, necessary for understanding the conceptual quality of retrieved instances.
Secondly, adversarial interventions on salient query semantics expose vulnerabilities of opaque metrics and highlight patterns in learned linguistic representations.
arXiv Detail & Related papers (2022-09-08T11:40:57Z) - Did the Cat Drink the Coffee? Challenging Transformers with Generalized
Event Knowledge [59.22170796793179]
Transformers Language Models (TLMs) were tested on a benchmark for the textitdynamic estimation of thematic fit
Our results show that TLMs can reach performances that are comparable to those achieved by SDM.
However, additional analysis consistently suggests that TLMs do not capture important aspects of event knowledge.
arXiv Detail & Related papers (2021-07-22T20:52:26Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.