Parallelized Midpoint Randomization for Langevin Monte Carlo
- URL: http://arxiv.org/abs/2402.14434v4
- Date: Wed, 08 Jan 2025 12:19:46 GMT
- Title: Parallelized Midpoint Randomization for Langevin Monte Carlo
- Authors: Lu Yu, Arnak Dalalyan,
- Abstract summary: We study the problem of sampling from a target probability density function in frameworks where parallel evaluations of the log-density gradient are feasible.
We derive upper bounds on the Wasserstein distance between sampling and target densities.
- Score: 5.548787731232499
- License:
- Abstract: We study the problem of sampling from a target probability density function in frameworks where parallel evaluations of the log-density gradient are feasible. Focusing on smooth and strongly log-concave densities, we revisit the parallelized randomized midpoint method and investigate its properties using recently developed techniques for analyzing its sequential version. Through these techniques, we derive upper bounds on the Wasserstein distance between sampling and target densities. These bounds quantify the substantial runtime improvements achieved through parallel processing.
Related papers
- Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
As data size grows, reducing the iteration cost becomes an important goal.
Inspired by the success of the parallel simulation of the initial value problem in scientific computation, we propose parallel Picard methods for sampling tasks.
Our work highlights the potential advantages of simulation methods in scientific computation for dynamics-based sampling and diffusion models.
arXiv Detail & Related papers (2024-12-10T11:50:46Z) - Constrained Sampling with Primal-Dual Langevin Monte Carlo [15.634831573546041]
This work considers the problem of sampling from a probability distribution known up to a normalization constant.
It satisfies a set of statistical constraints specified by the expected values of general nonlinear functions.
We put forward a discrete-time primal-dual Langevin Monte Carlo algorithm (PD-LMC) that simultaneously constrains the target distribution and samples from it.
arXiv Detail & Related papers (2024-11-01T13:26:13Z) - In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies [7.70133333709347]
We present a new random walk for uniformly sampling high-dimensional convex bodies.
It achieves state-of-the-art runtime complexity with stronger guarantees on the output.
arXiv Detail & Related papers (2024-05-02T16:15:46Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Langevin Monte Carlo for strongly log-concave distributions: Randomized
midpoint revisited [4.551456632596834]
We conduct an analysis of the midpoint discretization for the vanilla Langevin process.
This analysis helps to clarify the underlying principles and provides valuable insights.
We establish new guarantees for the kinetic Langevin process with Euler discretization.
arXiv Detail & Related papers (2023-06-14T13:18:09Z) - Resolving the Mixing Time of the Langevin Algorithm to its Stationary
Distribution for Log-Concave Sampling [34.66940399825547]
This paper characterizes the mixing time of the Langevin Algorithm to its stationary distribution.
We introduce a technique from the differential privacy literature to the sampling literature.
arXiv Detail & Related papers (2022-10-16T05:11:16Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
We introduce a new dual formulation for the regularized Wasserstein barycenter problem.
We establish strong duality and use the corresponding primal-dual relationship to parametrize the barycenter implicitly using the dual potentials of regularized transport problems.
arXiv Detail & Related papers (2020-08-28T08:28:06Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.