Noise-BERT: A Unified Perturbation-Robust Framework with Noise Alignment
Pre-training for Noisy Slot Filling Task
- URL: http://arxiv.org/abs/2402.14494v3
- Date: Wed, 6 Mar 2024 07:17:03 GMT
- Title: Noise-BERT: A Unified Perturbation-Robust Framework with Noise Alignment
Pre-training for Noisy Slot Filling Task
- Authors: Jinxu Zhao, Guanting Dong, Yueyan Qiu, Tingfeng Hui, Xiaoshuai Song,
Daichi Guo, Weiran Xu
- Abstract summary: In a realistic dialogue system, the input information from users is often subject to various types of input perturbations.
We propose Noise-BERT, a unified Perturbation-Robust Framework with Noise Alignment Pre-training.
Our framework incorporates two Noise Alignment Pre-training tasks: Slot Masked Prediction and Sentence Noisiness Discrimination.
- Score: 14.707646721729228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a realistic dialogue system, the input information from users is often
subject to various types of input perturbations, which affects the slot-filling
task. Although rule-based data augmentation methods have achieved satisfactory
results, they fail to exhibit the desired generalization when faced with
unknown noise disturbances. In this study, we address the challenges posed by
input perturbations in slot filling by proposing Noise-BERT, a unified
Perturbation-Robust Framework with Noise Alignment Pre-training. Our framework
incorporates two Noise Alignment Pre-training tasks: Slot Masked Prediction and
Sentence Noisiness Discrimination, aiming to guide the pre-trained language
model in capturing accurate slot information and noise distribution. During
fine-tuning, we employ a contrastive learning loss to enhance the semantic
representation of entities and labels. Additionally, we introduce an
adversarial attack training strategy to improve the model's robustness.
Experimental results demonstrate the superiority of our proposed approach over
state-of-the-art models, and further analysis confirms its effectiveness and
generalization ability.
Related papers
- Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Understanding the Effect of Noise in LLM Training Data with Algorithmic
Chains of Thought [0.0]
We study how noise in chain of thought impacts task performance in highly-controlled setting.
We define two types of noise: textitstatic noise, a local form of noise which is applied after the CoT trace is computed, and textitdynamic noise, a global form of noise which propagates errors in the trace as it is computed.
We find fine-tuned models are extremely robust to high levels of static noise but struggle significantly more with lower levels of dynamic noise.
arXiv Detail & Related papers (2024-02-06T13:59:56Z) - May the Noise be with you: Adversarial Training without Adversarial
Examples [3.4673556247932225]
We investigate the question: Can we obtain adversarially-trained models without training on adversarial?
Our proposed approach incorporates inherentity by embedding Gaussian noise within the layers of the NN model at training time.
Our work contributes adversarially trained networks using a completely different approach, with empirically similar robustness to adversarial training.
arXiv Detail & Related papers (2023-12-12T08:22:28Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
This paper aims to understand the nature of noise in pre-training datasets and to mitigate its impact on downstream tasks.
We propose a light-weight black-box tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise.
arXiv Detail & Related papers (2023-09-29T06:18:15Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - NLIP: Noise-robust Language-Image Pre-training [95.13287735264937]
We propose a principled Noise-robust Language-Image Pre-training framework (NLIP) to stabilize pre-training via two schemes: noise-harmonization and noise-completion.
Our NLIP can alleviate the common noise effects during image-text pre-training in a more efficient way.
arXiv Detail & Related papers (2022-12-14T08:19:30Z) - Sources of Noise in Dialogue and How to Deal with Them [63.02707014103651]
Training dialogue systems often entails dealing with noisy training examples and unexpected user inputs.
Despite their prevalence, there currently lacks an accurate survey of dialogue noise.
This paper addresses this gap by first constructing a taxonomy of noise encountered by dialogue systems.
arXiv Detail & Related papers (2022-12-06T04:36:32Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
Noise robustness is essential for deploying automatic speech recognition systems in real-world environments.
We employ a noise-robust representation learned by a refined self-supervised framework for noisy speech recognition.
We achieve comparable performance to the best supervised approach reported with only 16% of labeled data.
arXiv Detail & Related papers (2021-10-28T20:39:02Z) - Dynamic Layer Customization for Noise Robust Speech Emotion Recognition
in Heterogeneous Condition Training [16.807298318504156]
We show that we can improve performance by dynamically routing samples to specialized feature encoders for each noise condition.
We extend these improvements to the multimodal setting by dynamically routing samples to maintain temporal ordering.
arXiv Detail & Related papers (2020-10-21T18:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.