Scaling Up LLM Reviews for Google Ads Content Moderation
- URL: http://arxiv.org/abs/2402.14590v1
- Date: Wed, 7 Feb 2024 23:47:02 GMT
- Title: Scaling Up LLM Reviews for Google Ads Content Moderation
- Authors: Wei Qiao, Tushar Dogra, Otilia Stretcu, Yu-Han Lyu, Tiantian Fang,
Dongjin Kwon, Chun-Ta Lu, Enming Luo, Yuan Wang, Chih-Chun Chia, Ariel
Fuxman, Fangzhou Wang, Ranjay Krishna, Mehmet Tek
- Abstract summary: Large language models (LLMs) are powerful tools for content moderation, but their inference costs and latency make them prohibitive for casual use on large datasets.
This study proposes a method for scaling up LLM reviews for content in Google Ads.
- Score: 22.43127685744644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are powerful tools for content moderation, but
their inference costs and latency make them prohibitive for casual use on large
datasets, such as the Google Ads repository. This study proposes a method for
scaling up LLM reviews for content moderation in Google Ads. First, we use
heuristics to select candidates via filtering and duplicate removal, and create
clusters of ads for which we select one representative ad per cluster. We then
use LLMs to review only the representative ads. Finally, we propagate the LLM
decisions for the representative ads back to their clusters. This method
reduces the number of reviews by more than 3 orders of magnitude while
achieving a 2x recall compared to a baseline non-LLM model. The success of this
approach is a strong function of the representations used in clustering and
label propagation; we found that cross-modal similarity representations yield
better results than uni-modal representations.
Related papers
- SkillAggregation: Reference-free LLM-Dependent Aggregation [14.46141987797362]
Large Language Models (LLMs) are increasingly used to assess NLP tasks.
Recent work suggests using multiple LLMs as judges yields improved performance.
This work focuses on aggregating predictions from multiple systems where no reference labels are available.
arXiv Detail & Related papers (2024-10-14T07:13:47Z) - Paraphrase and Aggregate with Large Language Models for Minimizing Intent Classification Errors [19.601600598570215]
We show that large language models (LLM) can achieve high performance on large multi-class classification tasks but still make classification errors and worse, generate out-of-vocabulary class labels.
We introduce Paraphrase and AGgregate (PAG)-LLM approach wherein an LLM generates multiple paraphrases of the input query (parallel queries)
We show that PAG-LLM is especially effective for hard examples where LLM is uncertain, and reduces the critical misclassification and hallucinated label generation errors.
arXiv Detail & Related papers (2024-06-24T22:30:26Z) - Show, Don't Tell: Aligning Language Models with Demonstrated Feedback [54.10302745921713]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.
We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
Multimodal Large Language Models (MLLMs) excel at classifying fine-grained categories.
This paper introduces a Retrieving And Ranking augmented method for MLLMs.
Our proposed approach not only addresses the inherent limitations in fine-grained recognition but also preserves the model's comprehensive knowledge base.
arXiv Detail & Related papers (2024-03-20T17:59:55Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
We show how to optimize Large Language Models (LLMs) inference for analytical workloads that invoke LLMs within relational queries.
We implement these optimizations in Apache Spark, with vLLM as the model serving backend.
We achieve up to 4.4x improvement in end-to-end latency on a benchmark of diverse LLM-based queries on real datasets.
arXiv Detail & Related papers (2024-03-09T07:01:44Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
We introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations.
Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases.
arXiv Detail & Related papers (2024-02-09T11:23:14Z) - Detecting Generated Native Ads in Conversational Search [33.5694271503764]
Conversational search engines such as YouChat and Microsoft Copilot use large language models (LLMs) to generate responses to queries.
It is only a small step to also let the same technology insert ads within the generated responses.
Inserted ads would be reminiscent of native advertising and product placement.
arXiv Detail & Related papers (2024-02-07T14:22:51Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
We propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data.
Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker.
arXiv Detail & Related papers (2023-05-03T14:45:34Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
We propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios.
Our method, the Language language model as Retriever (LameR), is built upon no other neural models but an LLM.
arXiv Detail & Related papers (2023-04-27T14:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.