GaussianPro: 3D Gaussian Splatting with Progressive Propagation
- URL: http://arxiv.org/abs/2402.14650v1
- Date: Thu, 22 Feb 2024 16:00:20 GMT
- Title: GaussianPro: 3D Gaussian Splatting with Progressive Propagation
- Authors: Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma,
Wenping Wang, Xuejin Chen
- Abstract summary: 3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
- Score: 49.918797726059545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of 3D Gaussian Splatting (3DGS) has recently brought about a
revolution in the field of neural rendering, facilitating high-quality
renderings at real-time speed. However, 3DGS heavily depends on the initialized
point cloud produced by Structure-from-Motion (SfM) techniques. When tackling
with large-scale scenes that unavoidably contain texture-less surfaces, the SfM
techniques always fail to produce enough points in these surfaces and cannot
provide good initialization for 3DGS. As a result, 3DGS suffers from difficult
optimization and low-quality renderings. In this paper, inspired by classical
multi-view stereo (MVS) techniques, we propose GaussianPro, a novel method that
applies a progressive propagation strategy to guide the densification of the 3D
Gaussians. Compared to the simple split and clone strategies used in 3DGS, our
method leverages the priors of the existing reconstructed geometries of the
scene and patch matching techniques to produce new Gaussians with accurate
positions and orientations. Experiments on both large-scale and small-scale
scenes validate the effectiveness of our method, where our method significantly
surpasses 3DGS on the Waymo dataset, exhibiting an improvement of 1.15dB in
terms of PSNR.
Related papers
- Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting (3DGS) has emerged as a promising technique capable of real-time rendering with high-quality 3D reconstruction.
Despite its potential, 3DGS encounters challenges, including needle-like artifacts, suboptimal geometries, and inaccurate normals.
We introduce effective rank as a regularization, which constrains the structure of the Gaussians.
arXiv Detail & Related papers (2024-06-17T15:51:59Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) has proven to be highly effective in novel view synthesis, achieving high-quality and real-time rendering.
Our work introduces a Chamfer distance error comparable to NeuraLangelo on the DTU dataset and maintains similar computational efficiency as the original 3D GS methods.
arXiv Detail & Related papers (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - Text-to-3D using Gaussian Splatting [18.163413810199234]
This paper proposes GSGEN, a novel method that adopts Gaussian Splatting, a recent state-of-the-art representation, to text-to-3D generation.
GSGEN aims at generating high-quality 3D objects and addressing existing shortcomings by exploiting the explicit nature of Gaussian Splatting.
Our approach can generate 3D assets with delicate details and accurate geometry.
arXiv Detail & Related papers (2023-09-28T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.