Cleaner Pretraining Corpus Curation with Neural Web Scraping
- URL: http://arxiv.org/abs/2402.14652v3
- Date: Sat, 15 Jun 2024 03:05:54 GMT
- Title: Cleaner Pretraining Corpus Curation with Neural Web Scraping
- Authors: Zhipeng Xu, Zhenghao Liu, Yukun Yan, Zhiyuan Liu, Ge Yu, Chenyan Xiong,
- Abstract summary: This paper presents a simple, fast, and effective Neural web Scraper (NeuScraper) to help extract primary and clean text contents from webpages.
Experimental results show that NeuScraper surpasses the baseline scrapers by achieving more than a 20% improvement.
- Score: 39.97459187762505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The web contains large-scale, diverse, and abundant information to satisfy the information-seeking needs of humans. Through meticulous data collection, preprocessing, and curation, webpages can be used as a fundamental data resource for language model pretraining. However, when confronted with the progressively revolutionized and intricate nature of webpages, rule-based/feature-based web scrapers are becoming increasingly inadequate. This paper presents a simple, fast, and effective Neural web Scraper (NeuScraper) to help extract primary and clean text contents from webpages. Experimental results show that NeuScraper surpasses the baseline scrapers by achieving more than a 20% improvement, demonstrating its potential in extracting higher-quality data to facilitate the language model pretraining. All of the code is available at https://github.com/OpenMatch/NeuScraper.
Related papers
- AutoScraper: A Progressive Understanding Web Agent for Web Scraper Generation [54.17246674188208]
Web scraping is a powerful technique that extracts data from websites, enabling automated data collection, enhancing data analysis capabilities, and minimizing manual data entry efforts.
Existing methods, wrappers-based methods suffer from limited adaptability and scalability when faced with a new website.
We introduce the paradigm of generating web scrapers with large language models (LLMs) and propose AutoScraper, a two-stage framework that can handle diverse and changing web environments more efficiently.
arXiv Detail & Related papers (2024-04-19T09:59:44Z) - The Web Can Be Your Oyster for Improving Large Language Models [98.72358969495835]
Large language models (LLMs) encode a large amount of world knowledge.
We consider augmenting LLMs with the large-scale web using search engine.
We present a web-augmented LLM UNIWEB, which is trained over 16 knowledge-intensive tasks in a unified text-to-text format.
arXiv Detail & Related papers (2023-05-18T14:20:32Z) - PLM-GNN: A Webpage Classification Method based on Joint Pre-trained
Language Model and Graph Neural Network [19.75890828376791]
We propose a representation and classification method based on a pre-trained language model and graph neural network, named PLM-GNN.
It is based on the joint encoding of text and HTML DOM trees in the web pages. It performs well on the KI-04 and SWDE datasets and on practical dataset AHS for the project of scholar's homepage crawling.
arXiv Detail & Related papers (2023-05-09T12:19:10Z) - WebBrain: Learning to Generate Factually Correct Articles for Queries by
Grounding on Large Web Corpus [61.209202634703104]
We introduce a new NLP task -- generating short factual articles with references for queries by mining supporting evidence from the Web.
The ultimate goal is to generate a fluent, informative, and factually-correct short article for a factual query unseen in Wikipedia.
We construct a large-scale dataset WebBrain-Raw by extracting English Wikipedia articles and their crawlable Wikipedia references.
arXiv Detail & Related papers (2023-04-10T02:55:48Z) - Perplexed by Quality: A Perplexity-based Method for Adult and Harmful
Content Detection in Multilingual Heterogeneous Web Data [0.0]
We explore different methods for detecting adult and harmful of content in multilingual heterogeneous web data.
We train solely with adult and harmful textual data, and then select the documents having a perplexity value above a given threshold.
This approach will virtually cluster our documents into two distinct groups, which will greatly facilitate the choice of the threshold for the perplexity.
arXiv Detail & Related papers (2022-12-20T17:14:45Z) - Pix2Struct: Screenshot Parsing as Pretraining for Visual Language
Understanding [58.70423899829642]
We present Pix2Struct, a pretrained image-to-text model for purely visual language understanding.
We show that a single pretrained model can achieve state-of-the-art results in six out of nine tasks across four domains.
arXiv Detail & Related papers (2022-10-07T06:42:06Z) - GROWN+UP: A Graph Representation Of a Webpage Network Utilizing
Pre-training [0.2538209532048866]
We introduce an agnostic deep graph neural network feature extractor that can ingest webpage structures, pre-train self-supervised on massive unlabeled data, and fine-tune to arbitrary tasks on webpages effectually.
We show that our pre-trained model achieves state-of-the-art results using multiple datasets on two very different benchmarks: webpage boilerplate removal and genre classification.
arXiv Detail & Related papers (2022-08-03T13:37:27Z) - ZeroShotCeres: Zero-Shot Relation Extraction from Semi-Structured
Webpages [66.45377533562417]
We propose a solution for "zero-shot" open-domain relation extraction from webpages with a previously unseen template.
Our model uses a graph neural network-based approach to build a rich representation of text fields on a webpage.
arXiv Detail & Related papers (2020-05-14T16:15:58Z) - Boilerplate Removal using a Neural Sequence Labeling Model [4.056234173482691]
We propose a neural sequence labeling model that does not rely on any hand-crafted features but takes only the HTML tags and words that appear in a web page as input.
This allows us to present a browser extension which highlights the content of arbitrary web pages directly within the browser using our model.
arXiv Detail & Related papers (2020-04-22T08:06:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.