COBIAS: Contextual Reliability in Bias Assessment
- URL: http://arxiv.org/abs/2402.14889v3
- Date: Tue, 17 Sep 2024 09:24:42 GMT
- Title: COBIAS: Contextual Reliability in Bias Assessment
- Authors: Priyanshul Govil, Hemang Jain, Vamshi Krishna Bonagiri, Aman Chadha, Ponnurangam Kumaraguru, Manas Gaur, Sanorita Dey,
- Abstract summary: Large Language Models (LLMs) often inherit biases from the web data they are trained on, which contains stereotypes and prejudices.
Current methods for evaluating and mitigating these biases rely on bias-benchmark datasets.
We introduce a contextual reliability framework, which evaluates model robustness to biased statements by considering the various contexts in which they may appear.
- Score: 14.594920595573038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) often inherit biases from the web data they are trained on, which contains stereotypes and prejudices. Current methods for evaluating and mitigating these biases rely on bias-benchmark datasets. These benchmarks measure bias by observing an LLM's behavior on biased statements. However, these statements lack contextual considerations of the situations they try to present. To address this, we introduce a contextual reliability framework, which evaluates model robustness to biased statements by considering the various contexts in which they may appear. We develop the Context-Oriented Bias Indicator and Assessment Score (COBIAS) to measure a biased statement's reliability in detecting bias based on the variance in model behavior across different contexts. To evaluate the metric, we augment 2,291 stereotyped statements from two existing benchmark datasets by adding contextual information. We show that COBIAS aligns with human judgment on the contextual reliability of biased statements (Spearman's $\rho = 0.65$, $p = 3.4 * 10^{-60}$) and can be used to create reliable datasets, which would assist bias mitigation works.
Related papers
- Assessing Bias in Metric Models for LLM Open-Ended Generation Bias Benchmarks [3.973239756262797]
This study examines such biases in open-generation benchmarks like BOLD and SAGED.
Results reveal unequal treatment of demographic descriptors, calling for more robust bias metric models.
arXiv Detail & Related papers (2024-10-14T20:08:40Z) - Covert Bias: The Severity of Social Views' Unalignment in Language Models Towards Implicit and Explicit Opinion [0.40964539027092917]
We evaluate the severity of bias toward a view by using a biased model in edge cases of excessive bias scenarios.
Our findings reveal a discrepancy in LLM performance in identifying implicit and explicit opinions, with a general tendency of bias toward explicit opinions of opposing stances.
The direct, incautious responses of the unaligned models suggest a need for further refinement of decisiveness.
arXiv Detail & Related papers (2024-08-15T15:23:00Z) - Towards Real World Debiasing: A Fine-grained Analysis On Spurious Correlation [17.080528126651977]
We revisit biased distributions in existing benchmarks and real-world datasets, and propose a fine-grained framework for analyzing dataset bias.
Results show that existing methods are incapable of handling real-world biases.
We propose a simple yet effective approach that can be easily applied to existing debias methods, named Debias in Destruction (DiD)
arXiv Detail & Related papers (2024-05-24T06:06:41Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - Improving Evaluation of Debiasing in Image Classification [29.711865666774017]
Our study indicates several issues need to be improved when conducting evaluation of debiasing in image classification.
Based on such issues, this paper proposes an evaluation metric Align-Conflict (AC) score' for the tuning criterion.
We believe our findings and lessons inspire future researchers in debiasing to further push state-of-the-art performances with fair comparisons.
arXiv Detail & Related papers (2022-06-08T05:24:13Z) - How Gender Debiasing Affects Internal Model Representations, and Why It
Matters [26.993273464725995]
We show that intrinsic bias is better indicator of debiasing than the standard WEAT metric.
Our framework provides a comprehensive perspective on bias in NLP models, which can be applied to deploy NLP systems in a more informed manner.
arXiv Detail & Related papers (2022-04-14T08:54:15Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
We introduce SAME, a novel bias score for semantic bias in embeddings.
We show that SAME is capable of measuring semantic bias and identify potential causes for social bias in downstream tasks.
arXiv Detail & Related papers (2022-03-28T09:28:13Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Double Perturbation: On the Robustness of Robustness and Counterfactual
Bias Evaluation [109.06060143938052]
We propose a "double perturbation" framework to uncover model weaknesses beyond the test dataset.
We apply this framework to study two perturbation-based approaches that are used to analyze models' robustness and counterfactual bias in English.
arXiv Detail & Related papers (2021-04-12T06:57:36Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
Existing approaches to improve robustness against dataset biases mostly focus on changing the training objective.
We propose to augment the input sentences in the training data with their corresponding predicate-argument structures.
We show that without targeting a specific bias, our sentence augmentation improves the robustness of transformer models against multiple biases.
arXiv Detail & Related papers (2020-10-23T16:22:05Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.