Calculating the expected value function of a two-stage stochastic optimization program with a quantum algorithm
- URL: http://arxiv.org/abs/2402.15029v2
- Date: Mon, 11 Nov 2024 19:30:43 GMT
- Title: Calculating the expected value function of a two-stage stochastic optimization program with a quantum algorithm
- Authors: Caleb Rotello, Peter Graf, Matthew Reynolds, Eric B. Jones, Cody James Winkleblack, Wesley Jones,
- Abstract summary: Two-stage programming is a problem formulation for decision-making under uncertainty.
This work uses a quantum algorithm to estimate the expected value function with a speedup.
- Score: 0.0
- License:
- Abstract: Two-stage stochastic programming is a problem formulation for decision-making under uncertainty. In the first stage, the actor makes a best "here and now" decision in the presence of uncertain quantities that will be resolved in the future, represented in the objective function as the expected value function. This function is a multi-dimensional integral of the second stage optimization problem, which must be solved over all possible future scenarios. This work uses a quantum algorithm to estimate the expected value function with a polynomial speedup. Our algorithm gains its advantage through the two following observations. First, by encoding the probability distribution as a quantum wavefunction in an auxilliary register, and using this register as control logic for a phase-separation unitary, Digitized Quantum Annealing (DQA) can converge to the minimium of each scenario in the random variable in parallel. Second, Quantum Amplitude Estimation (QAE) on DQA can calculate the expected value of this per-scenario optimized wavefunction, producing an estimate for the expected value function. Quantum optimization is theorized to have a polynomial speedup for combinatorial optimization problems, and estimation error from QAE is known to converge inverse-linear in the number of samples (as opposed to the best case inverse of a square root in classical Monte Carlo). Therefore, assuming the probability distribution wavefunction can be prepared efficiently, we conclude our method has a polynomial speedup (of varying degree, depending on the optimization problem) over classical methods for estimating the expected value function. We conclude by demonstrating this algorithm on a stochastic programming problem inspired by operating the power grid under weather uncertainty.
Related papers
- Mixed State Variational Quantum Eigensolver for the Estimation of
Expectation Values at Finite Temperature [0.0]
We introduce a novel hybrid quantum-classical algorithm for the near-term computation of expectation values in quantum systems at finite temperatures.
This is based on two stages: on the first one, a mixed state approximating a fiducial truncated density matrix is prepared through Variational Quantum Eigensolving (VQE) techniques.
This is then followed by a reweighting stage where the expectation values for observables of interest are computed.
arXiv Detail & Related papers (2024-01-30T17:29:58Z) - Regularized Q-Learning with Linear Function Approximation [2.765106384328772]
We consider a bi-level optimization formulation of regularized Q-learning with linear functional approximation.
We show that, under certain assumptions, the proposed algorithm converges to a stationary point in the presence of Markovian noise.
arXiv Detail & Related papers (2024-01-26T20:45:40Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - A Sublinear-Time Quantum Algorithm for Approximating Partition Functions [0.0]
We present a novel quantum algorithm for estimating Gibbs partition functions in sublinear time.
This is the first speed-up of this type to be obtained over the seminal nearly-linear time of vStefankovivc, Vempala and Vigoda.
arXiv Detail & Related papers (2022-07-18T14:41:48Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linear iterations problems on quantum computers.
arXiv Detail & Related papers (2022-03-23T18:00:03Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Quantum algorithms for numerical differentiation of expected values with
respect to parameters [0.0]
We consider an expected value of a function of a variable and a real-valued parameter, and how to calculate derivatives of the expectation of the parameter.
Based on QMCI and the general-order central difference formula for numerical differentiation, we propose two quantum methods for this problem.
We see that, depending on the smoothness of the function and the number of qubits available, either of two methods is better than the other.
arXiv Detail & Related papers (2021-11-22T06:50:25Z) - Continuous black-box optimization with quantum annealing and random
subspace coding [2.839269856680851]
A black-box optimization algorithm such as Bayesian optimization finds extremum of an unknown function by alternating inference of the underlying function and optimization of an acquisition function.
In a high-dimensional space, such algorithms perform poorly due to the difficulty of acquisition function optimization.
We apply quantum annealing to overcome the difficulty in the continuous black-box optimization.
arXiv Detail & Related papers (2021-04-30T06:19:07Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.