MSPipe: Efficient Temporal GNN Training via Staleness-Aware Pipeline
- URL: http://arxiv.org/abs/2402.15113v2
- Date: Thu, 18 Jul 2024 09:26:40 GMT
- Title: MSPipe: Efficient Temporal GNN Training via Staleness-Aware Pipeline
- Authors: Guangming Sheng, Junwei Su, Chao Huang, Chuan Wu,
- Abstract summary: Memory-based Temporal Graph Neural Networks (MTGNNs) are a class of temporal graph neural networks that utilize a node memory module to capture and retain long-term temporal dependencies.
Existing optimizations for static GNNs are not directly applicable to MTGNNs due to differences in training paradigm, model architecture, and the absence of a memory module.
We propose MSPipe, a general and efficient framework for MTGNNs that maximizes training throughput while maintaining model accuracy.
- Score: 8.889825826072512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Memory-based Temporal Graph Neural Networks (MTGNNs) are a class of temporal graph neural networks that utilize a node memory module to capture and retain long-term temporal dependencies, leading to superior performance compared to memory-less counterparts. However, the iterative reading and updating process of the memory module in MTGNNs to obtain up-to-date information needs to follow the temporal dependencies. This introduces significant overhead and limits training throughput. Existing optimizations for static GNNs are not directly applicable to MTGNNs due to differences in training paradigm, model architecture, and the absence of a memory module. Moreover, they do not effectively address the challenges posed by temporal dependencies, making them ineffective for MTGNN training. In this paper, we propose MSPipe, a general and efficient framework for MTGNNs that maximizes training throughput while maintaining model accuracy. Our design addresses the unique challenges associated with fetching and updating node memory states in MTGNNs by integrating staleness into the memory module. However, simply introducing a predefined staleness bound in the memory module to break temporal dependencies may lead to suboptimal performance and lack of generalizability across different models and datasets. To solve this, we introduce an online pipeline scheduling algorithm in MSPipe that strategically breaks temporal dependencies with minimal staleness and delays memory fetching to obtain fresher memory states. Moreover, we design a staleness mitigation mechanism to enhance training convergence and model accuracy. We provide convergence analysis and prove that MSPipe maintains the same convergence rate as vanilla sample-based GNN training. Experimental results show that MSPipe achieves up to 2.45x speed-up without sacrificing accuracy, making it a promising solution for efficient MTGNN training.
Related papers
- MoM: Linear Sequence Modeling with Mixture-of-Memories [9.665802842933209]
We introduce a novel architecture called Mixture-of-Memories (MoM)
MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states.
MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques.
arXiv Detail & Related papers (2025-02-19T12:53:55Z) - Decision Trees That Remember: Gradient-Based Learning of Recurrent Decision Trees with Memory [1.4487264853431878]
We introduce ReMeDe Trees, a novel recurrent DT architecture that integrates an internal memory mechanism, similar to RNNs, to learn long-term dependencies in sequential data.
Our model learns hard, axis-aligned decision rules for both output generation and state updates, optimizing them efficiently via gradient descent.
arXiv Detail & Related papers (2025-02-06T13:11:50Z) - Optimal Gradient Checkpointing for Sparse and Recurrent Architectures using Off-Chip Memory [0.8321953606016751]
We introduce memory-efficient gradient checkpointing strategies tailored for the general class of sparse RNNs and Spiking Neural Networks.
We find that Double Checkpointing emerges as the most effective method, optimizing the use of local memory resources while minimizing recomputation overhead.
arXiv Detail & Related papers (2024-12-16T14:23:31Z) - PRES: Toward Scalable Memory-Based Dynamic Graph Neural Networks [22.47336262812308]
Memory-based Dynamic Graph Neural Networks (MDGNNs) are a family of dynamic graph neural networks that leverage a memory module to extract, distill, and long-term temporal dependencies.
This paper studies the efficient training of MDGNNs at scale, focusing on the temporal discontinuity in training MDGNNs with large temporal batch sizes.
arXiv Detail & Related papers (2024-02-06T01:34:56Z) - Topology-aware Embedding Memory for Continual Learning on Expanding Networks [63.35819388164267]
We present a framework to tackle the memory explosion problem using memory replay techniques.
PDGNNs with Topology-aware Embedding Memory (TEM) significantly outperform state-of-the-art techniques.
arXiv Detail & Related papers (2024-01-24T03:03:17Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Towards Zero Memory Footprint Spiking Neural Network Training [7.4331790419913455]
Spiking Neural Networks (SNNs) process information using discrete-time events known as spikes rather than continuous values.
In this paper, we introduce an innovative framework characterized by a remarkably low memory footprint.
Our design is able to achieve a $mathbf58.65times$ reduction in memory usage compared to the current SNN node.
arXiv Detail & Related papers (2023-08-16T19:49:24Z) - Decouple Graph Neural Networks: Train Multiple Simple GNNs Simultaneously Instead of One [60.5818387068983]
Graph neural networks (GNN) suffer from severe inefficiency.
We propose to decouple a multi-layer GNN as multiple simple modules for more efficient training.
We show that the proposed framework is highly efficient with reasonable performance.
arXiv Detail & Related papers (2023-04-20T07:21:32Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing.
We propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency.
Our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
arXiv Detail & Related papers (2023-02-28T05:01:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Memory-Guided Semantic Learning Network for Temporal Sentence Grounding [55.31041933103645]
We propose a memory-augmented network that learns and memorizes the rarely appeared content in TSG tasks.
MGSL-Net consists of three main parts: a cross-modal inter-action module, a memory augmentation module, and a heterogeneous attention module.
arXiv Detail & Related papers (2022-01-03T02:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.