GraphEdit: Large Language Models for Graph Structure Learning
- URL: http://arxiv.org/abs/2402.15183v4
- Date: Tue, 5 Mar 2024 05:22:00 GMT
- Title: GraphEdit: Large Language Models for Graph Structure Learning
- Authors: Zirui Guo, Lianghao Xia, Yanhua Yu, Yuling Wang, Zixuan Yang, Wei Wei,
Liang Pang, Tat-Seng Chua, Chao Huang
- Abstract summary: Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.
Existing GSL methods heavily depend on explicit graph structural information as supervision signals.
We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
- Score: 62.618818029177355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies
and interactions among nodes in graph-structured data by generating novel graph
structures. Graph Neural Networks (GNNs) have emerged as promising GSL
solutions, utilizing recursive message passing to encode node-wise
inter-dependencies. However, many existing GSL methods heavily depend on
explicit graph structural information as supervision signals, leaving them
susceptible to challenges such as data noise and sparsity. In this work, we
propose GraphEdit, an approach that leverages large language models (LLMs) to
learn complex node relationships in graph-structured data. By enhancing the
reasoning capabilities of LLMs through instruction-tuning over graph
structures, we aim to overcome the limitations associated with explicit graph
structural information and enhance the reliability of graph structure learning.
Our approach not only effectively denoises noisy connections but also
identifies node-wise dependencies from a global perspective, providing a
comprehensive understanding of the graph structure. We conduct extensive
experiments on multiple benchmark datasets to demonstrate the effectiveness and
robustness of GraphEdit across various settings. We have made our model
implementation available at: https://github.com/HKUDS/GraphEdit.
Related papers
- GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck [5.943641527857957]
We propose a novel method named textitGlobal-augmented Graph Structure Learning (GaGSL)
The key idea behind GaGSL is to learn a compact and informative graph structure for node classification tasks.
Comprehensive evaluations across a range of datasets reveal the outstanding performance and robustness of GaGSL compared with the state-of-the-art methods.
arXiv Detail & Related papers (2024-11-07T01:23:48Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information.
Key challenge remains: the difficulty of generalizing to unseen graph data with different properties.
We propose a novel graph foundation model, called OpenGraph, to address this challenge.
arXiv Detail & Related papers (2024-03-02T08:05:03Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
Graph Neural Networks (GNNs) have evolved to understand graph structures.
To enhance robustness, self-supervised learning (SSL) has become a vital tool for data augmentation.
Our research tackles this by advancing graph model generalization in zero-shot learning environments.
arXiv Detail & Related papers (2023-10-19T06:17:46Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
Graph Neural Networks (GNNs) are de facto solutions to structural data learning.
Existing graph structure learning (GSL) frameworks still lack robustness and interpretability.
This paper proposes a general GSL framework, SE-GSL, through structural entropy and the graph hierarchy abstracted in the encoding tree.
arXiv Detail & Related papers (2023-03-17T05:20:24Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.