DeMPT: Decoding-enhanced Multi-phase Prompt Tuning for Making LLMs Be Better Context-aware Translators
- URL: http://arxiv.org/abs/2402.15200v2
- Date: Mon, 23 Sep 2024 10:30:01 GMT
- Title: DeMPT: Decoding-enhanced Multi-phase Prompt Tuning for Making LLMs Be Better Context-aware Translators
- Authors: Xinglin Lyu, Junhui Li, Yanqing Zhao, Min Zhang, Daimeng Wei, Shimin Tao, Hao Yang, Min Zhang,
- Abstract summary: We propose an adaptation approach, named Decoding-enhanced Multi-phase Prompt Tuning (DeMPT)
During each phase, different continuous prompts are introduced to make LLMs discriminately model various information.
Experiments show that our approach significantly outperforms the concatenation method.
- Score: 26.665489056201725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generally, the decoder-only large language models (LLMs) are adapted to context-aware neural machine translation (NMT) in a concatenating way, where LLMs take the concatenation of the source sentence (i.e., intra-sentence context) and the inter-sentence context as the input, and then to generate the target tokens sequentially. This adaptation strategy, i.e., concatenation mode, considers intra-sentence and inter-sentence contexts with the same priority, despite an apparent difference between the two kinds of contexts. In this paper, we propose an alternative adaptation approach, named Decoding-enhanced Multi-phase Prompt Tuning (DeMPT), to make LLMs discriminately model and utilize the inter- and intra-sentence context and more effectively adapt LLMs to context-aware NMT. First, DeMPT divides the context-aware NMT process into three separate phases. During each phase, different continuous prompts are introduced to make LLMs discriminately model various information. Second, DeMPT employs a heuristic way to further discriminately enhance the utilization of the source-side inter- and intra-sentence information at the final decoding phase. Experiments show that our approach significantly outperforms the concatenation method, and further improves the performance of LLMs in discourse modeling.
Related papers
- GenEOL: Harnessing the Generative Power of LLMs for Training-Free Sentence Embeddings [7.957874169275548]
Training-free embedding methods directly leverage pretrained large language models (LLMs) to embed text.
We propose a novel method, which uses LLMs to generate diverse transformations of a sentence that preserve its meaning.
arXiv Detail & Related papers (2024-10-18T17:36:53Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
We propose a novel Cross-Modal LLM Fine-Tuning (CALF) framework for MTSF.
To reduce the distribution discrepancy, we develop the cross-modal match module.
CALF establishes state-of-the-art performance for both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-03-12T04:04:38Z) - SiLLM: Large Language Models for Simultaneous Machine Translation [41.303764786790616]
Simultaneous Machine Translation (SiMT) generates translations while reading the source sentence.
Existing SiMT methods employ a single model to concurrently determine the policy and generate the translations.
We propose SiLLM, which delegates the two sub-tasks to separate agents.
arXiv Detail & Related papers (2024-02-20T14:23:34Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks.
However, they fall short to comprehend context involving multiple images.
We propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion.
arXiv Detail & Related papers (2024-02-19T14:59:07Z) - ModaVerse: Efficiently Transforming Modalities with LLMs [25.49713745405194]
We introduce ModaVerse, a Multi-modal Large Language Model capable of comprehending and transforming content across various modalities.
We propose a novel Input/Output (I/O) alignment mechanism that operates directly at the level of natural language.
arXiv Detail & Related papers (2024-01-12T06:28:54Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
We study the use of generative large language models (LLM) generated context information.
We propose an approach to distill the generated information during fine-tuning of self-supervised speech models.
We evaluate the proposed approach using the SLUE and Libri-light benchmarks for several downstream tasks: automatic speech recognition, named entity recognition, and sentiment analysis.
arXiv Detail & Related papers (2023-12-15T15:46:02Z) - TEAL: Tokenize and Embed ALL for Multi-modal Large Language Models [69.49978333446538]
TEAL is an approach to treat the input from any modality as a token sequence.
It embeds the token sequence into a joint embedding space with a learnable embedding matrix.
Experiments show that TEAL achieves substantial improvements in multi-modal understanding.
arXiv Detail & Related papers (2023-11-08T10:34:16Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - Masked and Permuted Implicit Context Learning for Scene Text Recognition [8.742571493814326]
Scene Recognition (STR) is difficult because of variations in text styles, shapes, and backgrounds.
We propose a masked and permuted implicit context learning network for STR, within a single decoder.
arXiv Detail & Related papers (2023-05-25T15:31:02Z) - On Language Model Integration for RNN Transducer based Speech
Recognition [49.84285563767935]
We study various ILM correction-based LM integration methods formulated in a common RNN-T framework.
We provide a decoding interpretation on two major reasons for performance improvement with ILM correction.
We also propose an exact-ILM training framework by extending the proof given in the hybrid autoregressive transducer.
arXiv Detail & Related papers (2021-10-13T16:30:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.