Smoothed Graph Contrastive Learning via Seamless Proximity Integration
- URL: http://arxiv.org/abs/2402.15270v2
- Date: Tue, 26 Nov 2024 14:50:41 GMT
- Title: Smoothed Graph Contrastive Learning via Seamless Proximity Integration
- Authors: Maysam Behmanesh, Maks Ovsjanikov,
- Abstract summary: Graph contrastive learning (GCL) aligns node representations by classifying node pairs into positives and negatives.
We present a Smoothed Graph Contrastive Learning model (SGCL) that injects proximity information associated with positive/negative pairs in the contrastive loss.
The proposed SGCL adjusts the penalties associated with node pairs in contrastive loss by incorporating three distinct smoothing techniques.
- Score: 30.247207861739245
- License:
- Abstract: Graph contrastive learning (GCL) aligns node representations by classifying node pairs into positives and negatives using a selection process that typically relies on establishing correspondences within two augmented graphs. The conventional GCL approaches incorporate negative samples uniformly in the contrastive loss, resulting in the equal treatment of negative nodes, regardless of their proximity to the true positive. In this paper, we present a Smoothed Graph Contrastive Learning model (SGCL), which leverages the geometric structure of augmented graphs to inject proximity information associated with positive/negative pairs in the contrastive loss, thus significantly regularizing the learning process. The proposed SGCL adjusts the penalties associated with node pairs in contrastive loss by incorporating three distinct smoothing techniques that result in proximity-aware positives and negatives. To enhance scalability for large-scale graphs, the proposed framework incorporates a graph batch-generating strategy that partitions the given graphs into multiple subgraphs, facilitating efficient training in separate batches. Through extensive experimentation in the unsupervised setting on various benchmarks, particularly those of large scale, we demonstrate the superiority of our proposed framework against recent baselines.
Related papers
- Self-Supervised Conditional Distribution Learning on Graphs [15.730933577970687]
We present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features.
This alignment effectively reduces the risk of disrupting intrinsic semantic information through graph-structured data augmentation.
arXiv Detail & Related papers (2024-11-20T07:26:36Z) - Negative-Free Self-Supervised Gaussian Embedding of Graphs [29.26519601854811]
Graph Contrastive Learning (GCL) has emerged as a promising graph self-supervised learning framework.
We propose a negative-free objective to achieve uniformity, inspired by the fact that points distributed according to a normalized isotropic Gaussian are uniformly spread across the unit hypersphere.
Our proposal achieves competitive performance with fewer parameters, shorter training times, and lower memory consumption compared to existing GCL methods.
arXiv Detail & Related papers (2024-11-02T07:04:40Z) - Bootstrap Latents of Nodes and Neighbors for Graph Self-Supervised Learning [27.278097015083343]
Contrastive learning requires negative samples to prevent model collapse and learn discriminative representations.
We introduce a cross-attention module to predict the supportiveness score of a neighbor with respect to the anchor node.
Our method mitigates class collision from negative and noisy positive samples, concurrently enhancing intra-class compactness.
arXiv Detail & Related papers (2024-08-09T14:17:52Z) - Bilateral Unsymmetrical Graph Contrastive Learning for Recommendation [12.945782054710113]
We propose a novel framework for recommendation tasks called Bilateral Unsymmetrical Graph Contrastive Learning (BusGCL)
BusGCL considers the bilateral unsymmetry on user-item node relation density for sliced user and item graph reasoning better with bilateral slicing contrastive training.
Comprehensive experiments on two public datasets have proved the superiority of BusGCL in comparison to various recommendation methods.
arXiv Detail & Related papers (2024-03-22T09:58:33Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Single-Pass Contrastive Learning Can Work for Both Homophilic and
Heterophilic Graph [60.28340453547902]
Graph contrastive learning (GCL) techniques typically require two forward passes for a single instance to construct the contrastive loss.
Existing GCL approaches fail to provide strong performance guarantees.
We implement the Single-Pass Graph Contrastive Learning method (SP-GCL)
Empirically, the features learned by the SP-GCL can match or outperform existing strong baselines with significantly less computational overhead.
arXiv Detail & Related papers (2022-11-20T07:18:56Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
We present a self-supervised learning method termed Unifying Graph Contrastive Learning with Flexible Contextual Scopes (UGCL for short)
Our algorithm builds flexible contextual representations with contextual scopes by controlling the power of an adjacency matrix.
Based on representations from both local and contextual scopes, distL optimises a very simple contrastive loss function for graph representation learning.
arXiv Detail & Related papers (2022-10-17T07:16:17Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.