Foundation Policies with Hilbert Representations
- URL: http://arxiv.org/abs/2402.15567v2
- Date: Sun, 26 May 2024 17:44:52 GMT
- Title: Foundation Policies with Hilbert Representations
- Authors: Seohong Park, Tobias Kreiman, Sergey Levine,
- Abstract summary: We propose an unsupervised framework to pre-train generalist policies from unlabeled offline data.
Our key insight is to learn a structured representation that preserves the temporal structure of the underlying environment.
Our experiments show that our unsupervised policies can solve goal-conditioned and general RL tasks in a zero-shot fashion.
- Score: 54.44869979017766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised and self-supervised objectives, such as next token prediction, have enabled pre-training generalist models from large amounts of unlabeled data. In reinforcement learning (RL), however, finding a truly general and scalable unsupervised pre-training objective for generalist policies from offline data remains a major open question. While a number of methods have been proposed to enable generic self-supervised RL, based on principles such as goal-conditioned RL, behavioral cloning, and unsupervised skill learning, such methods remain limited in terms of either the diversity of the discovered behaviors, the need for high-quality demonstration data, or the lack of a clear adaptation mechanism for downstream tasks. In this work, we propose a novel unsupervised framework to pre-train generalist policies that capture diverse, optimal, long-horizon behaviors from unlabeled offline data such that they can be quickly adapted to any arbitrary new tasks in a zero-shot manner. Our key insight is to learn a structured representation that preserves the temporal structure of the underlying environment, and then to span this learned latent space with directional movements, which enables various zero-shot policy "prompting" schemes for downstream tasks. Through our experiments on simulated robotic locomotion and manipulation benchmarks, we show that our unsupervised policies can solve goal-conditioned and general RL tasks in a zero-shot fashion, even often outperforming prior methods designed specifically for each setting. Our code and videos are available at https://seohong.me/projects/hilp/.
Related papers
- SMORE: Score Models for Offline Goal-Conditioned Reinforcement Learning [33.125187822259186]
Offline Goal-Conditioned Reinforcement Learning (GCRL) is tasked with learning to achieve multiple goals in an environment purely from offline datasets using sparse reward functions.
We present a novel approach to GCRL under a new lens of mixture-distribution matching, leading to our discriminator-free method: SMORe.
arXiv Detail & Related papers (2023-11-03T16:19:33Z) - HIQL: Offline Goal-Conditioned RL with Latent States as Actions [81.67963770528753]
We propose a hierarchical algorithm for goal-conditioned RL from offline data.
We show how this hierarchical decomposition makes our method robust to noise in the estimated value function.
Our method can solve long-horizon tasks that stymie prior methods, can scale to high-dimensional image observations, and can readily make use of action-free data.
arXiv Detail & Related papers (2023-07-22T00:17:36Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
offline reinforcement learning aims to train a policy on a pre-recorded and fixed dataset without any additional environment interactions.
We build upon recent works on learning policies in latent action spaces and use a special form of Normalizing Flows for constructing a generative model.
We evaluate our method on various locomotion and navigation tasks, demonstrating that our approach outperforms recently proposed algorithms.
arXiv Detail & Related papers (2022-11-20T21:57:10Z) - Exploration Policies for On-the-Fly Controller Synthesis: A
Reinforcement Learning Approach [0.0]
We propose a new method for obtaining unboundeds based on Reinforcement Learning (RL)
Our agents learn from scratch in a highly observable partially RL task and outperform existing overall, in instances unseen during training.
arXiv Detail & Related papers (2022-10-07T20:28:25Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.