Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications
- URL: http://arxiv.org/abs/2402.15650v3
- Date: Wed, 28 Aug 2024 20:13:43 GMT
- Title: Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications
- Authors: Zihan Zhou, Jonathan Booher, Khashayar Rohanimanesh, Wei Liu, Aleksandr Petiushko, Animesh Garg,
- Abstract summary: The widely adopted CMDP model constrains the risks in expectation, which makes room for dangerous behaviors in long-tail states.
In safety-critical domains, such behaviors could lead to disastrous outcomes.
We propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic.
- Score: 73.58451824894568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe reinforcement learning tasks are a challenging domain despite being very common in the real world. The widely adopted CMDP model constrains the risks in expectation, which makes room for dangerous behaviors in long-tail states. In safety-critical domains, such behaviors could lead to disastrous outcomes. To address this issue, we first describe the problem with a stronger Uniformly Constrained MDP (UCMDP) model where we impose constraints on all reachable states; we then propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic, as a solution to the Lagrangian dual of a UCMDP. We benchmark Objective Suppression in two multi-constraint safety domains, including an autonomous driving domain where any incorrect behavior can lead to disastrous consequences. On the driving domain, we evaluate on open source and proprietary data and evaluate transfer to a real autonomous fleet. Empirically, we demonstrate that our proposed method, when combined with existing safe RL algorithms, can match the task reward achieved by baselines with significantly fewer constraint violations.
Related papers
- Safe Policy Exploration Improvement via Subgoals [44.07721205323709]
Reinforcement learning is a widely used approach to autonomous navigation, showing potential in various tasks and robotic setups.
One of the main reasons for poor performance in such setups is that the need to respect the safety constraints degrades the exploration capabilities of an RL agent.
We introduce a novel learnable algorithm that is based on decomposing the initial problem into smaller sub-problems via intermediate goals.
arXiv Detail & Related papers (2024-08-25T16:12:49Z) - Cross-Modality Safety Alignment [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.
To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.
Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Safety-Constrained Policy Transfer with Successor Features [19.754549649781644]
We propose a Constrained Markov Decision Process (CMDP) formulation that enables the transfer of policies and adherence to safety constraints.
Our approach relies on a novel extension of generalized policy improvement to constrained settings via a Lagrangian formulation.
Our experiments in simulated domains show that our approach is effective; it visits unsafe states less frequently and outperforms alternative state-of-the-art methods when taking safety constraints into account.
arXiv Detail & Related papers (2022-11-10T06:06:36Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement learning (RL) has shown a promising performance in learning optimal policies for a variety of sequential decision-making tasks.
In many real-world RL problems, besides optimizing the main objectives, the agent is expected to satisfy a certain level of safety.
We propose a Lyapunov-based uncertainty-aware safe RL model to address these limitations.
arXiv Detail & Related papers (2021-07-29T13:08:15Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Constrained Markov Decision Processes via Backward Value Functions [43.649330976089004]
We model the problem of learning with constraints as a Constrained Markov Decision Process.
A key contribution of our approach is to translate cumulative cost constraints into state-based constraints.
We provide theoretical guarantees under which the agent converges while ensuring safety over the course of training.
arXiv Detail & Related papers (2020-08-26T20:56:16Z) - Deep Constrained Q-learning [15.582910645906145]
In many real world applications, reinforcement learning agents have to optimize multiple objectives while following certain rules or satisfying a set of constraints.
We propose Constrained Q-learning, a novel off-policy reinforcement learning framework restricting the action space directly in the Q-update to learn the optimal Q-function for the induced constrained MDP and the corresponding safe policy.
arXiv Detail & Related papers (2020-03-20T17:26:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.