Deep Homography Estimation for Visual Place Recognition
- URL: http://arxiv.org/abs/2402.16086v2
- Date: Mon, 18 Mar 2024 09:33:47 GMT
- Title: Deep Homography Estimation for Visual Place Recognition
- Authors: Feng Lu, Shuting Dong, Lijun Zhang, Bingxi Liu, Xiangyuan Lan, Dongmei Jiang, Chun Yuan,
- Abstract summary: We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
- Score: 49.235432979736395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual place recognition (VPR) is a fundamental task for many applications such as robot localization and augmented reality. Recently, the hierarchical VPR methods have received considerable attention due to the trade-off between accuracy and efficiency. They usually first use global features to retrieve the candidate images, then verify the spatial consistency of matched local features for re-ranking. However, the latter typically relies on the RANSAC algorithm for fitting homography, which is time-consuming and non-differentiable. This makes existing methods compromise to train the network only in global feature extraction. Here, we propose a transformer-based deep homography estimation (DHE) network that takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification. Moreover, we design a re-projection error of inliers loss to train the DHE network without additional homography labels, which can also be jointly trained with the backbone network to help it extract the features that are more suitable for local matching. Extensive experiments on benchmark datasets show that our method can outperform several state-of-the-art methods. And it is more than one order of magnitude faster than the mainstream hierarchical VPR methods using RANSAC. The code is released at https://github.com/Lu-Feng/DHE-VPR.
Related papers
- Vector Field Attention for Deformable Image Registration [9.852055065890479]
Deformable image registration establishes non-linear spatial correspondences between fixed and moving images.
Most existing deep learning-based methods require neural networks to encode location information in their feature maps.
We present Vector Field Attention (VFA), a novel framework that enhances the efficiency of the existing network design by enabling direct retrieval of location correspondences.
arXiv Detail & Related papers (2024-07-14T14:06:58Z) - Collaborative Visual Place Recognition through Federated Learning [5.06570397863116]
Visual Place Recognition (VPR) aims to estimate the location of an image by treating it as a retrieval problem.
VPR uses a database of geo-tagged images and leverages deep neural networks to extract a global representation, called descriptor, from each image.
This research revisits the task of VPR through the lens of Federated Learning (FL), addressing several key challenges associated with this adaptation.
arXiv Detail & Related papers (2024-04-20T08:48:37Z) - AANet: Aggregation and Alignment Network with Semi-hard Positive Sample
Mining for Hierarchical Place Recognition [48.043749855085025]
Visual place recognition (VPR) is one of the research hotspots in robotics, which uses visual information to locate robots.
We present a unified network capable of extracting global features for retrieving candidates via an aggregation module.
We also propose a Semi-hard Positive Sample Mining (ShPSM) strategy to select appropriate hard positive images for training more robust VPR networks.
arXiv Detail & Related papers (2023-10-08T14:46:11Z) - DETR Doesn't Need Multi-Scale or Locality Design [69.56292005230185]
This paper presents an improved DETR detector that maintains a "plain" nature.
It uses a single-scale feature map and global cross-attention calculations without specific locality constraints.
We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints.
arXiv Detail & Related papers (2023-08-03T17:59:04Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds.
The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled.
The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information.
arXiv Detail & Related papers (2022-12-12T13:10:19Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - STA-VPR: Spatio-temporal Alignment for Visual Place Recognition [17.212503755962757]
We propose an adaptive dynamic time warping algorithm to align local features from the spatial domain while measuring the distance between two images.
A local matching DTW algorithm is applied to perform image sequence matching based on temporal alignment.
The results show that the proposed method significantly improves the CNN-based methods.
arXiv Detail & Related papers (2021-03-25T03:27:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.