REPLAY: Modeling Time-Varying Temporal Regularities of Human Mobility for Location Prediction over Sparse Trajectories
- URL: http://arxiv.org/abs/2402.16310v3
- Date: Fri, 7 Jun 2024 01:14:26 GMT
- Title: REPLAY: Modeling Time-Varying Temporal Regularities of Human Mobility for Location Prediction over Sparse Trajectories
- Authors: Bangchao Deng, Bingqing Qu, Pengyang Wang, Dingqi Yang, Benjamin Fankhauser, Philippe Cudre-Mauroux,
- Abstract summary: We propose REPLAY, a general RNN architecture learning to capture the time-varying temporal regularities for location prediction.
Specifically, REPLAY not only resorts to distances in sparse trajectories to search for the informative hidden past states, but also accommodates the time-varying temporal regularities.
Results show that REPLAY consistently and significantly outperforms state-of-the-art methods by 7.7%-10.9% in the location prediction task.
- Score: 7.493786214342181
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Location prediction forecasts a user's location based on historical user mobility traces. To tackle the intrinsic sparsity issue of real-world user mobility traces, spatiotemporal contexts have been shown as significantly useful. Existing solutions mostly incorporate spatiotemporal distances between locations in mobility traces, either by feeding them as additional inputs to Recurrent Neural Networks (RNNs) or by using them to search for informative past hidden states for prediction. However, such distance-based methods fail to capture the time-varying temporal regularities of human mobility, where human mobility is often more regular in the morning than in other periods, for example; this suggests the usefulness of the actual timestamps besides the temporal distances. Against this background, we propose REPLAY, a general RNN architecture learning to capture the time-varying temporal regularities for location prediction. Specifically, REPLAY not only resorts to the spatiotemporal distances in sparse trajectories to search for the informative past hidden states, but also accommodates the time-varying temporal regularities by incorporating smoothed timestamp embeddings using Gaussian weighted averaging with timestamp-specific learnable bandwidths, which can flexibly adapt to the temporal regularities of different strengths across different timestamps. Our extensive evaluation compares REPLAY against a sizable collection of state-of-the-art techniques on two real-world datasets. Results show that REPLAY consistently and significantly outperforms state-of-the-art methods by 7.7\%-10.9\% in the location prediction task, and the bandwidths reveal interesting patterns of the time-varying temporal regularities.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Cross-attention Spatio-temporal Context Transformer for Semantic
Segmentation of Historical Maps [18.016789471815855]
Historical maps provide useful-temporal information on the Earth's surface before modern earth observation techniques came into being.
Aleatoric uncertainty known as data-dependent uncertainty inherent in the drawing/fading defects of the original map sheets.
We propose a U--based network that fuses maps that aggregating information at a larger range as well as through a temporal sequence.
arXiv Detail & Related papers (2023-10-19T09:49:58Z) - Temporal Smoothness Regularisers for Neural Link Predictors [8.975480841443272]
We show that a simple method like TNTComplEx can produce significantly more accurate results than state-of-the-art methods.
We also evaluate the impact of a wide range of temporal smoothing regularisers on two state-of-the-art temporal link prediction models.
arXiv Detail & Related papers (2023-09-16T16:52:49Z) - MomentDiff: Generative Video Moment Retrieval from Random to Real [71.40038773943638]
We provide a generative diffusion-based framework called MomentDiff.
MomentDiff simulates a typical human retrieval process from random browsing to gradual localization.
We show that MomentDiff consistently outperforms state-of-the-art methods on three public benchmarks.
arXiv Detail & Related papers (2023-07-06T09:12:13Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - Geo-Adaptive Deep Spatio-Temporal predictive modeling for human mobility [5.864710987890994]
Deep GA-vLS assumes data to be of fixed and regular shaped tensor shaped and face challenges of handling irregular data.
We present a novel geo-aware enabled learning operation based on a novel data structure for dependencies while maintaining the recurrent mechanism.
arXiv Detail & Related papers (2022-11-27T16:51:28Z) - Spatio-temporal predictive tasks for abnormal event detection in videos [60.02503434201552]
We propose new constrained pretext tasks to learn object level normality patterns.
Our approach consists in learning a mapping between down-scaled visual queries and their corresponding normal appearance and motion characteristics.
Experiments on several benchmark datasets demonstrate the effectiveness of our approach to localize and track anomalies.
arXiv Detail & Related papers (2022-10-27T19:45:12Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
Traffic series forecasting is challenging due to complex time series patterns for the same time series patterns may vary across time, where, for example, there exist periods across a day showing stronger temporal correlations.
Such-temporal models employ a shared parameter space irrespective of the time locations and the time periods and they assume that the temporal correlations are similar across locations and do not always hold across time which may not always be the case.
We propose a framework that aims at turning ICD-temporal aware models to encode sub-temporal models.
arXiv Detail & Related papers (2022-03-29T16:44:56Z) - Region Invariant Normalizing Flows for Mobility Transfer [3.776855783688713]
We propose a novel transfer learning framework called REFORMD, for continuous-time location prediction.
We capture the evolving region-specific checkin dynamics for MTPP and spatial-temporal flows.
Our model significantly outperforms state-of-the-art methods for modeling continuous-time sequences.
arXiv Detail & Related papers (2021-09-13T06:54:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.