MB-RACS: Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network
- URL: http://arxiv.org/abs/2402.16855v1
- Date: Fri, 19 Jan 2024 04:40:20 GMT
- Title: MB-RACS: Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network
- Authors: Yujun Huang, Bin Chen, Naiqi Li, Baoyi An, Shu-Tao Xia, Yaowei Wang,
- Abstract summary: We propose a Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network (MB-RACS) framework.
Our experiments demonstrate that the proposed MB-RACS method surpasses current leading methods.
- Score: 65.1004435124796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional compressed sensing (CS) algorithms typically apply a uniform sampling rate to different image blocks. A more strategic approach could be to allocate the number of measurements adaptively, based on each image block's complexity. In this paper, we propose a Measurement-Bounds-based Rate-Adaptive Image Compressed Sensing Network (MB-RACS) framework, which aims to adaptively determine the sampling rate for each image block in accordance with traditional measurement bounds theory. Moreover, since in real-world scenarios statistical information about the original image cannot be directly obtained, we suggest a multi-stage rate-adaptive sampling strategy. This strategy sequentially adjusts the sampling ratio allocation based on the information gathered from previous samplings. We formulate the multi-stage rate-adaptive sampling as a convex optimization problem and address it using a combination of Newton's method and binary search techniques. Additionally, we enhance our decoding process by incorporating skip connections between successive iterations to facilitate a richer transmission of feature information across iterations. Our experiments demonstrate that the proposed MB-RACS method surpasses current leading methods, with experimental evidence also underscoring the effectiveness of each module within our proposed framework.
Related papers
- Progressive Learning with Visual Prompt Tuning for Variable-Rate Image
Compression [60.689646881479064]
We propose a progressive learning paradigm for transformer-based variable-rate image compression.
Inspired by visual prompt tuning, we use LPM to extract prompts for input images and hidden features at the encoder side and decoder side, respectively.
Our model outperforms all current variable image methods in terms of rate-distortion performance and approaches the state-of-the-art fixed image compression methods trained from scratch.
arXiv Detail & Related papers (2023-11-23T08:29:32Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
Raw images have distinct advantages over sRGB images, e.g., linearity and fine-grained quantization levels.
They are not widely adopted by general users due to their substantial storage requirements.
We propose a novel framework that learns a compact representation in the latent space, serving as metadata.
arXiv Detail & Related papers (2023-06-21T06:59:07Z) - MOSAIC: Masked Optimisation with Selective Attention for Image
Reconstruction [0.5541644538483947]
We propose a novel compressive sensing framework to reconstruct images given any random selection of measurements.
MOSAIC incorporates an embedding technique to efficiently apply attention mechanisms on an encoded sequence of measurements.
A range of experiments validate our proposed architecture as a promising alternative for existing CS reconstruction methods.
arXiv Detail & Related papers (2023-06-01T17:05:02Z) - ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic
SAR Imaging with Adaptive Threshold [13.379416816598873]
This paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA)
The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem.
In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise.
arXiv Detail & Related papers (2022-11-30T09:55:45Z) - Cross-boosting of WNNM Image Denoising method by Directional Wavelet
Packets [2.7648976108201815]
The paper presents an image denoising scheme by combining a method that is based on directional quasi-analytic wavelet packets (qWPs) with the state-of-the-art Weighted Nuclear Norm Minimization (WNNM) denoising algorithm.
The proposed methodology couples the qWPdn capabilities to capture edges and fine texture patterns even in the severely corrupted images.
arXiv Detail & Related papers (2022-06-09T11:37:46Z) - Toward Real-World Super-Resolution via Adaptive Downsampling Models [58.38683820192415]
This study proposes a novel method to simulate an unknown downsampling process without imposing restrictive prior knowledge.
We propose a generalizable low-frequency loss (LFL) in the adversarial training framework to imitate the distribution of target LR images without using any paired examples.
arXiv Detail & Related papers (2021-09-08T06:00:32Z) - End-to-End Sequential Sampling and Reconstruction for MR Imaging [37.29958197193658]
We propose a framework that learns a sequential sampling policy simultaneously with a reconstruction strategy.
Our proposed method outperforms the current state-of-the-art learned k-space sampling baseline on up to 96.96% of test samples.
arXiv Detail & Related papers (2021-05-13T17:56:18Z) - Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image
Classification [97.81205777897043]
Recent work has shown that convolutional neural network classifiers overly rely on texture at the expense of shape cues.
We make a similar but different distinction between shape and local image cues, on the one hand, and global image statistics, on the other.
Our method, called Permuted Adaptive Instance Normalization (pAdaIN), reduces the representation of global statistics in the hidden layers of image classifiers.
arXiv Detail & Related papers (2020-10-09T16:38:38Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame.
Inter- and intra-frames are the key sources for exploiting temporal and spatial information.
We build an effective multi-correspondence aggregation network (MuCAN) for VSR.
arXiv Detail & Related papers (2020-07-23T05:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.