Pragmatic Goal-Oriented Communications under Semantic-Effectiveness Channel Errors
- URL: http://arxiv.org/abs/2402.16858v2
- Date: Tue, 4 Jun 2024 10:10:22 GMT
- Title: Pragmatic Goal-Oriented Communications under Semantic-Effectiveness Channel Errors
- Authors: Tomás Hüttebräucker, Mohamed Sana, Emilio Calvanese Strinati,
- Abstract summary: In forthcoming AI-assisted 6G networks, integrating semantic, pragmatic, and goal-oriented communication strategies becomes imperative.
This paper proposes and details a novel mathematical modeling of errors stemming from language mismatches at both semantic and effectiveness levels.
Our numerical results show the potential of the proposed mechanism to compensate for language mismatches, thereby enhancing the attainability of reliable communication under noisy communication environments.
- Score: 3.266331042379877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In forthcoming AI-assisted 6G networks, integrating semantic, pragmatic, and goal-oriented communication strategies becomes imperative. This integration will enable sensing, transmission, and processing of exclusively pertinent task data, ensuring conveyed information possesses understandable, pragmatic semantic significance, aligning with destination needs and goals. Without doubt, no communication is error free. Within this context, besides errors stemming from typical wireless communication dynamics, potential distortions between transmitter-intended and receiver-interpreted meanings can emerge due to limitations in semantic processing capabilities, as well as language and knowledge representation disparities between transmitters and receivers. The main contribution of this paper is two-fold. First, it proposes and details a novel mathematical modeling of errors stemming from language mismatches at both semantic and effectiveness levels. Second, it provides a novel algorithmic solution to counteract these types of errors which leverages optimal transport theory. Our numerical results show the potential of the proposed mechanism to compensate for language mismatches, thereby enhancing the attainability of reliable communication under noisy communication environments.
Related papers
- Dynamic Relative Representations for Goal-Oriented Semantic Communications [13.994922919058922]
semantic and effectiveness aspects of communications will play a fundamental role in 6G wireless networks.
In latent space communication, this challenge manifests as misalignment within high-dimensional representations where deep neural networks encode data.
This paper presents a novel framework for goal-oriented semantic communication, leveraging relative representations to mitigate semantic mismatches.
arXiv Detail & Related papers (2024-03-25T17:48:06Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
A pragmatic semantic communication framework is proposed in this paper.
It enables effective goal-oriented information sharing between two-intelligent agents.
Numerical evaluations demonstrate the framework's ability to achieve efficient communication with a reduced amount of bits.
arXiv Detail & Related papers (2023-11-30T03:36:19Z) - Semantic Channel Equalizer: Modelling Language Mismatch in Multi-User
Semantic Communications [7.135255376289843]
We consider a multi-user semantic communications system in which agents (transmitters and receivers) interact through the exchange of semantic messages.
The crucial role of languages in semantic communications is often overlooked.
We propose a new semantic channel equalizer to counteract and limit the critical ambiguity in message interpretation.
arXiv Detail & Related papers (2023-08-04T12:08:19Z) - Reasoning over the Air: A Reasoning-based Implicit Semantic-Aware
Communication Framework [124.6509194665514]
A novel implicit semantic-aware communication (iSAC) architecture is proposed for representing, communicating, and interpreting the implicit semantic meaning between source and destination users.
A projection-based semantic encoder is proposed to convert the high-dimensional graphical representation of explicit semantics into a low-dimensional semantic constellation space for efficient physical channel transmission.
A generative adversarial imitation learning-based solution, called G-RML, is proposed to enable the destination user to learn and imitate the implicit semantic reasoning process of source user.
arXiv Detail & Related papers (2023-06-20T01:32:27Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
Two cognitive semantic communication frameworks are proposed for the single-user and multiple-user communication scenarios.
An effective semantic correction algorithm is proposed by mining the inference rule from the knowledge graph.
For the multi-user cognitive semantic communication system, a message recovery algorithm is proposed to distinguish messages of different users.
arXiv Detail & Related papers (2023-03-15T12:01:43Z) - Less Data, More Knowledge: Building Next Generation Semantic
Communication Networks [180.82142885410238]
We present the first rigorous vision of a scalable end-to-end semantic communication network.
We first discuss how the design of semantic communication networks requires a move from data-driven networks towards knowledge-driven ones.
By using semantic representation and languages, we show that the traditional transmitter and receiver now become a teacher and apprentice.
arXiv Detail & Related papers (2022-11-25T19:03:25Z) - Communication Beyond Transmitting Bits: Semantics-Guided Source and
Channel Coding [7.080957878208516]
"Semantic communications" offers promising research direction.
Injecting semantic guidance into the coded transmission design to achieve semantics-aware communications shows great potential for breakthrough in effectiveness and reliability.
This article sheds light on semantics-guided source and channel coding as a transmission paradigm of semantic communications.
arXiv Detail & Related papers (2022-08-04T06:12:55Z) - Beyond Transmitting Bits: Context, Semantics, and Task-Oriented
Communications [88.68461721069433]
Next generation systems can be potentially enriched by folding message semantics and goals of communication into their design.
This tutorial summarizes the efforts to date, starting from its early adaptations, semantic-aware and task-oriented communications.
The focus is on approaches that utilize information theory to provide the foundations, as well as the significant role of learning in semantics and task-aware communications.
arXiv Detail & Related papers (2022-07-19T16:00:57Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.