Theoretical Unification of the Fractured Aspects of Information
- URL: http://arxiv.org/abs/2402.16924v1
- Date: Mon, 26 Feb 2024 10:35:41 GMT
- Title: Theoretical Unification of the Fractured Aspects of Information
- Authors: Marcin J. Schroeder
- Abstract summary: An overview of the concept of information in the conceptualization of intelligence, complexity, and consciousness.
An example of a possible application in the development of the unified theory of information free from unnecessary divisions and claims of superiority.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The article has as its main objective the identification of fundamental
epistemological obstacles in the study of information related to unnecessary
methodological assumptions and the demystification of popular beliefs in the
fundamental divisions of the aspects of information that can be understood as
Bachelardian rupture of epistemological obstacles. These general considerations
are preceded by an overview of the motivations for the study of information and
the role of the concept of information in the conceptualization of
intelligence, complexity, and consciousness justifying the need for a
sufficiently general perspective in the study of information, and are followed
at the end of the article by a brief exposition of an example of a possible
application in the development of the unified theory of information free from
unnecessary divisions and claims of superiority of the existing preferences in
methodology. The reference to Gaston Bachelard and his ideas of epistemological
obstacles and epistemological ruptures seems highly appropriate for the
reflection on the development of information study, in particular in the
context of obstacles such as the absence of semantics of information,
negligence of its structural analysis, separation of its digital and analog
forms, and misguided use of mathematics.
Related papers
- A Framework for Information Disorder: Modeling Mechanisms and Implications Based on a Systematic Literature Review [0.0]
We propose a five-stage framework capturing information disorder's full life cycle.
This approach calls for a shift away from fragmented interventions toward more holistic, system-level policy responses.
arXiv Detail & Related papers (2025-04-16T23:57:21Z) - Causal Abstraction in Model Interpretability: A Compact Survey [5.963324728136442]
causal abstraction provides a principled approach to understanding and explaining the causal mechanisms underlying model behavior.
This survey paper delves into the realm of causal abstraction, examining its theoretical foundations, practical applications, and implications for the field of model interpretability.
arXiv Detail & Related papers (2024-10-26T12:24:28Z) - Reasoning with Natural Language Explanations [15.281385727331473]
Explanation constitutes an archetypal feature of human rationality, underpinning learning and generalisation.
An increasing amount of research in Natural Language Inference (NLI) has started reconsidering the role that explanations play in learning and inference.
arXiv Detail & Related papers (2024-10-05T13:15:24Z) - A Mechanistic Interpretation of Syllogistic Reasoning in Auto-Regressive Language Models [13.59675117792588]
Recent studies on logical reasoning in auto-regressive Language Models (LMs) have sparked a debate on whether such models can learn systematic reasoning principles during pre-training.
This paper presents a mechanistic interpretation of syllogistic reasoning in LMs to further enhance our understanding of internal dynamics.
arXiv Detail & Related papers (2024-08-16T07:47:39Z) - On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey [82.49623756124357]
Zero-shot image recognition (ZSIR) aims at empowering models to recognize and reason in unseen domains.
This paper presents a broad review of recent advances in element-wise ZSIR.
We first attempt to integrate the three basic ZSIR tasks of object recognition, compositional recognition, and foundation model-based open-world recognition into a unified element-wise perspective.
arXiv Detail & Related papers (2024-08-09T05:49:21Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Biologically-informed deep learning models for cancer: fundamental
trends for encoding and interpreting oncology data [0.0]
We provide a structured literature analysis focused on Deep Learning (DL) models used to support inference in cancer biology.
The work focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability.
arXiv Detail & Related papers (2022-07-02T12:11:35Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
We study the role of conceptualization in commonsense reasoning, and formulate a framework to replicate human conceptual induction.
We apply the framework to ATOMIC, a large-scale human-annotated CKG, aided by the taxonomy Probase.
arXiv Detail & Related papers (2022-06-03T12:24:49Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - The General Theory of General Intelligence: A Pragmatic Patternist
Perspective [0.0]
Review covers underlying philosophies, formalizations of the concept of intelligence, and a proposed high level architecture for AGI systems.
The specifics of human-like cognitive architecture are presented as manifestations of these general principles.
Lessons for practical implementation of advanced AGI in frameworks such as OpenCog Hyperon are briefly considered.
arXiv Detail & Related papers (2021-03-28T10:11:25Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.