NocPlace: Nocturnal Visual Place Recognition via Generative and Inherited Knowledge Transfer
- URL: http://arxiv.org/abs/2402.17159v2
- Date: Thu, 21 Mar 2024 07:29:34 GMT
- Title: NocPlace: Nocturnal Visual Place Recognition via Generative and Inherited Knowledge Transfer
- Authors: Bingxi Liu, Yiqun Wang, Huaqi Tao, Tingjun Huang, Fulin Tang, Yihong Wu, Jinqiang Cui, Hong Zhang,
- Abstract summary: NocPlace embeds resilience against dazzling lights and extreme darkness in the global descriptor.
NocPlace improves the performance of Eigenplaces by 7.6% on Tokyo 24/7 Night and 16.8% on SVOX Night.
- Score: 11.203135595002978
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Visual Place Recognition (VPR) is crucial in computer vision, aiming to retrieve database images similar to a query image from an extensive collection of known images. However, like many vision tasks, VPR always degrades at night due to the scarcity of nighttime images. Moreover, VPR needs to address the cross-domain problem of night-to-day rather than just the issue of a single nighttime domain. In response to these issues, we present NocPlace, which leverages generative and inherited knowledge transfer to embed resilience against dazzling lights and extreme darkness in the global descriptor. First, we establish a day-night urban scene dataset called NightCities, capturing diverse lighting variations and dark scenarios across 60 cities globally. Then, an image generation network is trained on this dataset and processes a large-scale VPR dataset, obtaining its nighttime version. Finally, VPR models are fine-tuned using descriptors inherited from themselves and night-style images, which builds explicit cross-domain contrastive relationships. Comprehensive experiments on various datasets demonstrate our contributions and the superiority of NocPlace. Without adding any real-time computing resources, NocPlace improves the performance of Eigenplaces by 7.6% on Tokyo 24/7 Night and 16.8% on SVOX Night.
Related papers
- Exploring Reliable Matching with Phase Enhancement for Night-time Semantic Segmentation [58.180226179087086]
We propose a novel end-to-end optimized approach, named NightFormer, tailored for night-time semantic segmentation.
Specifically, we design a pixel-level texture enhancement module to acquire texture-aware features hierarchically with phase enhancement and amplified attention.
Our proposed method performs favorably against state-of-the-art night-time semantic segmentation methods.
arXiv Detail & Related papers (2024-08-25T13:59:31Z) - PIG: Prompt Images Guidance for Night-Time Scene Parsing [48.35991796324741]
Unsupervised domain adaptation (UDA) has become the predominant method for studying night scenes.
We propose a Night-Focused Network (NFNet) to learn night-specific features from both target domain images and prompt images.
We conduct experiments on four night-time datasets: NightCity, NightCity+, Dark Zurich, and ACDC.
arXiv Detail & Related papers (2024-06-15T07:06:19Z) - Similarity Min-Max: Zero-Shot Day-Night Domain Adaptation [52.923298434948606]
Low-light conditions not only hamper human visual experience but also degrade the model's performance on downstream vision tasks.
This paper challenges a more complicated scenario with border applicability, i.e., zero-shot day-night domain adaptation.
We propose a similarity min-max paradigm that considers them under a unified framework.
arXiv Detail & Related papers (2023-07-17T18:50:15Z) - Disentangled Contrastive Image Translation for Nighttime Surveillance [87.03178320662592]
Nighttime surveillance suffers from degradation due to poor illumination and arduous human annotations.
Existing methods rely on multi-spectral images to perceive objects in the dark, which are troubled by low resolution and color absence.
We argue that the ultimate solution for nighttime surveillance is night-to-day translation, or Night2Day.
This paper contributes a new surveillance dataset called NightSuR. It includes six scenes to support the study on nighttime surveillance.
arXiv Detail & Related papers (2023-07-11T06:40:27Z) - NPR: Nocturnal Place Recognition in Streets [15.778129994700496]
We propose a novel pipeline that divides Visual Place Recognition (VPR) and conquers Nocturnal Place Recognition (NPR)
Specifically, we first established a street-level day-night dataset, NightStreet, and used it to train an unpaired image-to-image translation model.
Then we used this model to process existing large-scale VPR datasets to generate the VPR-Night datasets and demonstrated how to combine them with two popular VPR pipelines.
arXiv Detail & Related papers (2023-04-01T09:43:58Z) - Boosting Night-time Scene Parsing with Learnable Frequency [53.05778451012621]
Night-Time Scene Parsing (NTSP) is essential to many vision applications, especially for autonomous driving.
Most of the existing methods are proposed for day-time scene parsing.
We show that our method performs favorably against the state-of-the-art methods on the NightCity, NightCity+ and BDD100K-night datasets.
arXiv Detail & Related papers (2022-08-30T13:09:59Z) - Self-supervised Monocular Depth Estimation for All Day Images using
Domain Separation [17.066753214406525]
We propose a domain-separated network for self-supervised depth estimation of all-day images.
Our approach achieves state-of-the-art depth estimation results for all-day images on the challenging Oxford RobotCar dataset.
arXiv Detail & Related papers (2021-08-17T13:52:19Z) - DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime
Semantic Segmentation [18.43890050736093]
We propose a novel domain adaptation network (DANNet) for nighttime semantic segmentation.
It employs an adversarial training with a labeled daytime dataset and an unlabeled dataset that contains coarsely aligned day-night image pairs.
Our method achieves state-of-the-art performance for nighttime semantic segmentation.
arXiv Detail & Related papers (2021-04-22T02:49:28Z) - Night-time Scene Parsing with a Large Real Dataset [67.11211537439152]
We aim to address the night-time scene parsing (NTSP) problem, which has two main challenges.
To tackle the scarcity of night-time data, we collect a novel labeled dataset, named it NightCity, of 4,297 real night-time images.
We also propose an exposure-aware framework to address the NTSP problem through augmenting the segmentation process with explicitly learned exposure features.
arXiv Detail & Related papers (2020-03-15T18:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.