One-Shot Structure-Aware Stylized Image Synthesis
- URL: http://arxiv.org/abs/2402.17275v2
- Date: Tue, 2 Apr 2024 03:18:07 GMT
- Title: One-Shot Structure-Aware Stylized Image Synthesis
- Authors: Hansam Cho, Jonghyun Lee, Seunggyu Chang, Yonghyun Jeong,
- Abstract summary: OSASIS is a novel one-shot stylization method that is robust in structure preservation.
We show that OSASIS is able to effectively disentangle the semantics from the structure of an image, allowing it to control the level of content and style implemented to a given input.
Results show that OSASIS outperforms other stylization methods, especially for input images that were rarely encountered during training.
- Score: 7.418475280387784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While GAN-based models have been successful in image stylization tasks, they often struggle with structure preservation while stylizing a wide range of input images. Recently, diffusion models have been adopted for image stylization but still lack the capability to maintain the original quality of input images. Building on this, we propose OSASIS: a novel one-shot stylization method that is robust in structure preservation. We show that OSASIS is able to effectively disentangle the semantics from the structure of an image, allowing it to control the level of content and style implemented to a given input. We apply OSASIS to various experimental settings, including stylization with out-of-domain reference images and stylization with text-driven manipulation. Results show that OSASIS outperforms other stylization methods, especially for input images that were rarely encountered during training, providing a promising solution to stylization via diffusion models.
Related papers
- ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
This paper presents an inversion-free portrait stylization framework based on diffusion models that accomplishes content and style feature fusion in merely four sampling steps.
We propose a feature merging strategy to amalgamate redundant features in Consistency Features, thereby reducing the computational load of attention control.
arXiv Detail & Related papers (2024-08-10T08:53:41Z) - Powerful and Flexible: Personalized Text-to-Image Generation via Reinforcement Learning [40.06403155373455]
We propose a novel reinforcement learning framework for personalized text-to-image generation.
Our proposed approach outperforms existing state-of-the-art methods by a large margin on visual fidelity while maintaining text-alignment.
arXiv Detail & Related papers (2024-07-09T08:11:53Z) - Ada-adapter:Fast Few-shot Style Personlization of Diffusion Model with Pre-trained Image Encoder [57.574544285878794]
Ada-Adapter is a novel framework for few-shot style personalization of diffusion models.
Our method enables efficient zero-shot style transfer utilizing a single reference image.
We demonstrate the effectiveness of our approach on various artistic styles, including flat art, 3D rendering, and logo design.
arXiv Detail & Related papers (2024-07-08T02:00:17Z) - StyleMaster: Towards Flexible Stylized Image Generation with Diffusion Models [42.45078883553856]
Stylized Text-to-Image Generation (STIG) aims to generate images based on text prompts and style reference images.
We in this paper propose a novel framework dubbed as StyleMaster for this task by leveraging pretrained Stable Diffusion.
Two objective functions are introduced to optimize the model together with denoising loss, which can further enhance semantic and style consistency.
arXiv Detail & Related papers (2024-05-24T07:19:40Z) - HiCAST: Highly Customized Arbitrary Style Transfer with Adapter Enhanced
Diffusion Models [84.12784265734238]
The goal of Arbitrary Style Transfer (AST) is injecting the artistic features of a style reference into a given image/video.
We propose HiCAST, which is capable of explicitly customizing the stylization results according to various source of semantic clues.
A novel learning objective is leveraged for video diffusion model training, which significantly improve cross-frame temporal consistency.
arXiv Detail & Related papers (2024-01-11T12:26:23Z) - Style Aligned Image Generation via Shared Attention [61.121465570763085]
We introduce StyleAligned, a technique designed to establish style alignment among a series of generated images.
By employing minimal attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models.
Our method's evaluation across diverse styles and text prompts demonstrates high-quality and fidelity.
arXiv Detail & Related papers (2023-12-04T18:55:35Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStyler is a dual diffusion processing architecture to control the balance between the content and style of diffused results.
We propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image.
arXiv Detail & Related papers (2022-11-19T12:30:44Z) - Adversarial Style Augmentation for Domain Generalized Urban-Scene
Segmentation [120.96012935286913]
We propose a novel adversarial style augmentation approach, which can generate hard stylized images during training.
Experiments on two synthetic-to-real semantic segmentation benchmarks demonstrate that AdvStyle can significantly improve the model performance on unseen real domains.
arXiv Detail & Related papers (2022-07-11T14:01:25Z) - STALP: Style Transfer with Auxiliary Limited Pairing [36.23393954839379]
We present an approach to example-based stylization of images that uses a single pair of a source image and its stylized counterpart.
We demonstrate how to train an image translation network that can perform real-time semantically meaningful style transfer to a set of target images.
arXiv Detail & Related papers (2021-10-20T11:38:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.