Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation
- URL: http://arxiv.org/abs/2402.17316v3
- Date: Thu, 6 Jun 2024 04:08:24 GMT
- Title: Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation
- Authors: Yaofo Chen, Shuaicheng Niu, Yaowei Wang, Shoukai Xu, Hengjie Song, Mingkui Tan,
- Abstract summary: We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
- Score: 56.79064699832383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The conventional deep learning paradigm often involves training a deep model on a server and then deploying the model or its distilled ones to resource-limited edge devices. Usually, the models shall remain fixed once deployed (at least for some period) due to the potential high cost of model adaptation for both the server and edge sides. However, in many real-world scenarios, the test environments may change dynamically (known as distribution shifts), which often results in degraded performance. Thus, one has to adapt the edge models promptly to attain promising performance. Moreover, with the increasing data collected at the edge, this paradigm also fails to further adapt the cloud model for better performance. To address these, we encounter two primary challenges: 1) the edge model has limited computation power and may only support forward propagation; 2) the data transmission budget between cloud and edge devices is limited in latency-sensitive scenarios. In this paper, we establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation and the edge models can be adapted online. In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud, i.e., dynamic unreliable and low-informative sample exclusion. Based on the uploaded samples, we update and distribute the affine parameters of normalization layers by distilling from the stronger foundation model to the edge model with a sample replay strategy. Extensive experimental results on ImageNet-C and ImageNet-R verify the effectiveness of our CEMA.
Related papers
- Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
We design a hybrid edge-cloud solution that leverages the efficiency of smaller models for local processing while deferring to larger, more accurate cloud-based models when necessary.
Specifically, we propose a novel unsupervised data generation method, Dual-Model Distillation (DMD), to train a lightweight switcher model that can predict when the edge model's output is uncertain.
Experimental results on the action classification task show that our framework not only requires less computational overhead, but also improves accuracy compared to using a large model alone.
arXiv Detail & Related papers (2024-10-16T02:06:27Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Low-rank Adaptation for Spatio-Temporal Forecasting [13.595533573828734]
We present a novel low-rank adaptation framework as an off-the-shelf plugin for existing spatialtemporal prediction models, STLo-RA.
Our approach increases parameters and training time of the original models by less than 4%, still achieving consistent and sustained performance enhancement.
arXiv Detail & Related papers (2024-04-11T17:04:55Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - ECLM: Efficient Edge-Cloud Collaborative Learning with Continuous
Environment Adaptation [47.35179593006409]
We propose ECLM, an edge-cloud collaborative learning framework for rapid model adaptation for dynamic edge environments.
We show that ECLM significantly improves model performance (e.g., 18.89% accuracy increase) and resource efficiency (e.g. 7.12x communication cost reduction) in adapting models to dynamic edge environments.
arXiv Detail & Related papers (2023-11-18T14:10:09Z) - DualCF: Efficient Model Extraction Attack from Counterfactual
Explanations [57.46134660974256]
Cloud service providers have launched Machine-Learning-as-a-Service platforms to allow users to access large-scale cloudbased models via APIs.
Such extra information inevitably causes the cloud models to be more vulnerable to extraction attacks.
We propose a novel simple yet efficient querying strategy to greatly enhance the querying efficiency to steal a classification model.
arXiv Detail & Related papers (2022-05-13T08:24:43Z) - Optimal Model Placement and Online Model Splitting for Device-Edge
Co-Inference [22.785214118527872]
Device-edge co-inference opens up new possibilities for resource-constrained wireless devices to execute deep neural network (DNN)-based applications.
We study the joint optimization of the model placement and online model splitting decisions to minimize the energy-and-time cost of device-edge co-inference.
arXiv Detail & Related papers (2021-05-28T06:55:04Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.