Towards Fairness-Aware Adversarial Learning
- URL: http://arxiv.org/abs/2402.17729v2
- Date: Wed, 27 Mar 2024 23:33:15 GMT
- Title: Towards Fairness-Aware Adversarial Learning
- Authors: Yanghao Zhang, Tianle Zhang, Ronghui Mu, Xiaowei Huang, Wenjie Ruan,
- Abstract summary: We propose a novel learning paradigm, named Fairness-Aware Adversarial Learning (FAAL)
Our method aims to find the worst distribution among different categories, and the solution is guaranteed to obtain the upper bound performance with high probability.
In particular, FAAL can fine-tune an unfair robust model to be fair within only two epochs, without compromising the overall clean and robust accuracies.
- Score: 13.932705960012846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although adversarial training (AT) has proven effective in enhancing the model's robustness, the recently revealed issue of fairness in robustness has not been well addressed, i.e. the robust accuracy varies significantly among different categories. In this paper, instead of uniformly evaluating the model's average class performance, we delve into the issue of robust fairness, by considering the worst-case distribution across various classes. We propose a novel learning paradigm, named Fairness-Aware Adversarial Learning (FAAL). As a generalization of conventional AT, we re-define the problem of adversarial training as a min-max-max framework, to ensure both robustness and fairness of the trained model. Specifically, by taking advantage of distributional robust optimization, our method aims to find the worst distribution among different categories, and the solution is guaranteed to obtain the upper bound performance with high probability. In particular, FAAL can fine-tune an unfair robust model to be fair within only two epochs, without compromising the overall clean and robust accuracies. Extensive experiments on various image datasets validate the superior performance and efficiency of the proposed FAAL compared to other state-of-the-art methods.
Related papers
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
Current methods for mitigating bias often result in information loss and an inadequate balance between accuracy and fairness.
We propose a novel methodology grounded in bilevel optimization principles.
Our deep learning-based approach concurrently optimize for both accuracy and fairness objectives.
arXiv Detail & Related papers (2024-10-21T18:53:39Z) - DAFA: Distance-Aware Fair Adversarial Training [34.94780532071229]
Under adversarial attacks, the majority of the model's predictions for samples from the worst class are biased towards classes similar to the worst class.
We introduce the Distance-Aware Fair Adversarial training (DAFA) methodology, which addresses robust fairness by taking into account the similarities between classes.
arXiv Detail & Related papers (2024-01-23T07:15:47Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - FITNESS: A Causal De-correlation Approach for Mitigating Bias in Machine
Learning Software [6.4073906779537095]
Biased datasets can lead to unfair and potentially harmful outcomes.
In this paper, we propose a bias mitigation approach via de-correlating the causal effects between sensitive features and the label.
Our key idea is that by de-correlating such effects from a causality perspective, the model would avoid making predictions based on sensitive features.
arXiv Detail & Related papers (2023-05-23T06:24:43Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints.
We formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints.
We demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
arXiv Detail & Related papers (2022-12-23T22:29:08Z) - Improving Robust Fairness via Balance Adversarial Training [51.67643171193376]
Adversarial training (AT) methods are effective against adversarial attacks, yet they introduce severe disparity of accuracy and robustness between different classes.
We propose Adversarial Training (BAT) to address the robust fairness problem.
arXiv Detail & Related papers (2022-09-15T14:44:48Z) - DAFT: Distilling Adversarially Fine-tuned Models for Better OOD
Generalization [35.53270942633211]
We consider the problem of OOD generalization, where the goal is to train a model that performs well on test distributions that are different from the training distribution.
We propose a new method - DAFT - based on the intuition that adversarially robust combination of a large number of rich features should provide OOD robustness.
We evaluate DAFT on standard benchmarks in the DomainBed framework, and demonstrate that DAFT achieves significant improvements over the current state-of-the-art OOD generalization methods.
arXiv Detail & Related papers (2022-08-19T03:48:17Z) - Probabilistically Robust Learning: Balancing Average- and Worst-case
Performance [105.87195436925722]
We propose a framework called robustness probabilistic that bridges the gap between the accurate, yet brittle average case and the robust, yet conservative worst case.
From a theoretical point of view, this framework overcomes the trade-offs between the performance and the sample-complexity of worst-case and average-case learning.
arXiv Detail & Related papers (2022-02-02T17:01:38Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.