Certain and Approximately Certain Models for Statistical Learning
- URL: http://arxiv.org/abs/2402.17926v2
- Date: Fri, 1 Mar 2024 19:48:53 GMT
- Title: Certain and Approximately Certain Models for Statistical Learning
- Authors: Cheng Zhen, Nischal Aryal, Arash Termehchy, Alireza Aghasi, Amandeep
Singh Chabada
- Abstract summary: We show that it is possible to learn accurate models directly from data with missing values for certain training data and target models.
We build efficient algorithms with theoretical guarantees to check this necessity and return accurate models in cases where imputation is unnecessary.
- Score: 4.318959672085627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world data is often incomplete and contains missing values. To train
accurate models over real-world datasets, users need to spend a substantial
amount of time and resources imputing and finding proper values for missing
data items. In this paper, we demonstrate that it is possible to learn accurate
models directly from data with missing values for certain training data and
target models. We propose a unified approach for checking the necessity of data
imputation to learn accurate models across various widely-used machine learning
paradigms. We build efficient algorithms with theoretical guarantees to check
this necessity and return accurate models in cases where imputation is
unnecessary. Our extensive experiments indicate that our proposed algorithms
significantly reduce the amount of time and effort needed for data imputation
without imposing considerable computational overhead.
Related papers
- Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
We introduce a taxonomy of possible disgorgement methods that are applicable to modern machine learning systems.
We investigate the meaning of "removing the effects" of data in the trained model in a way that does not require retraining from scratch.
arXiv Detail & Related papers (2023-04-07T08:50:18Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - PROMISSING: Pruning Missing Values in Neural Networks [0.0]
We propose a simple and intuitive yet effective method for pruning missing values (PROMISSING) during learning and inference steps in neural networks.
Our experiments show that PROMISSING results in similar prediction performance compared to various imputation techniques.
arXiv Detail & Related papers (2022-06-03T15:37:27Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
Estimating the number of distinct values (NDV) in a column is useful for many tasks in database systems.
In this work, we focus on how to derive accurate NDV estimations from random (online/offline) samples.
We propose to formulate the NDV estimation task in a supervised learning framework, and aim to learn a model as the estimator.
arXiv Detail & Related papers (2022-02-06T15:42:04Z) - Minimax rate of consistency for linear models with missing values [0.0]
Missing values arise in most real-world data sets due to the aggregation of multiple sources and intrinsically missing information (sensor failure, unanswered questions in surveys...).
In this paper, we focus on the extensively-studied linear models, but in presence of missing values, which turns out to be quite a challenging task.
This eventually requires to solve a number of learning tasks, exponential in the number of input features, which makes predictions impossible for current real-world datasets.
arXiv Detail & Related papers (2022-02-03T08:45:34Z) - Complementary Ensemble Learning [1.90365714903665]
We derive a technique to improve performance of state-of-the-art deep learning models.
Specifically, we train auxiliary models which are able to complement state-of-the-art model uncertainty.
arXiv Detail & Related papers (2021-11-09T03:23:05Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Data Minimization for GDPR Compliance in Machine Learning Models [0.0]
EU General Data Protection Regulation requires only data necessary to fulfill a certain purpose to be collected.
We present a first-of-a-kind method to reduce the amount of personal data needed to perform predictions.
Our method makes use of knowledge encoded within the model to produce a generalization that has little impact on its accuracy.
arXiv Detail & Related papers (2020-08-06T08:21:15Z) - Learning from Imperfect Annotations [15.306536555936692]
Many machine learning systems today are trained on large amounts of human-annotated data.
We propose a new end-to-end framework that enables us to merge the aggregation step with model training.
We show accuracy gains of up to 25% over the current state-of-the-art approaches for aggregating annotations.
arXiv Detail & Related papers (2020-04-07T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.