User Decision Guidance with Selective Explanation Presentation from Explainable-AI
- URL: http://arxiv.org/abs/2402.18016v3
- Date: Mon, 27 May 2024 01:40:54 GMT
- Title: User Decision Guidance with Selective Explanation Presentation from Explainable-AI
- Authors: Yosuke Fukuchi, Seiji Yamada,
- Abstract summary: How IDSSs should select explanations to enhance user decision-making remains an open question.
This paper proposes X-Selector, a method for selectively presenting XAI explanations.
It enables IDSSs to strategically guide users to an AI-suggested decision.
- Score: 2.6396287656676725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the challenge of selecting explanations for XAI (Explainable AI)-based Intelligent Decision Support Systems (IDSSs). IDSSs have shown promise in improving user decisions through XAI-generated explanations along with AI predictions, and the development of XAI made it possible to generate a variety of such explanations. However, how IDSSs should select explanations to enhance user decision-making remains an open question. This paper proposes X-Selector, a method for selectively presenting XAI explanations. It enables IDSSs to strategically guide users to an AI-suggested decision by predicting the impact of different combinations of explanations on a user's decision and selecting the combination that is expected to minimize the discrepancy between an AI suggestion and a user decision. We compared the efficacy of X-Selector with two naive strategies (all possible explanations and explanations only for the most likely prediction) and two baselines (no explanation and no AI support). The results suggest the potential of X-Selector to guide users to AI-suggested decisions and improve task performance under the condition of a high AI accuracy.
Related papers
- Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills [24.04643864795939]
People's decision-making abilities often fail to improve when they rely on AI for decision-support.
Most AI systems offer "unilateral" explanations that justify the AI's decision but do not account for users' thinking.
We introduce a framework for generating human-centered contrastive explanations that explain the difference between AI's choice and a predicted, likely human choice.
arXiv Detail & Related papers (2024-10-05T18:21:04Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Should XAI Nudge Human Decisions with Explanation Biasing? [2.6396287656676725]
This paper reviews our previous trials of Nudge-XAI, an approach that introduces automatic biases into explanations from explainable AIs (XAIs)
Nudge-XAI uses a user model that predicts the influence of providing an explanation or emphasizing it and attempts to guide users toward AI-suggested decisions without coercion.
arXiv Detail & Related papers (2024-06-11T14:53:07Z) - In Search of Verifiability: Explanations Rarely Enable Complementary
Performance in AI-Advised Decision Making [25.18203172421461]
We argue explanations are only useful to the extent that they allow a human decision maker to verify the correctness of an AI's prediction.
We also compare the objective of complementary performance with that of appropriate reliance, decomposing the latter into the notions of outcome-graded and strategy-graded reliance.
arXiv Detail & Related papers (2023-05-12T18:28:04Z) - Selective Explanations: Leveraging Human Input to Align Explainable AI [40.33998268146951]
We propose a general framework for generating selective explanations by leveraging human input on a small sample.
As a showcase, we use a decision-support task to explore selective explanations based on what the decision-maker would consider relevant to the decision task.
Our experiments demonstrate the promise of selective explanations in reducing over-reliance on AI.
arXiv Detail & Related papers (2023-01-23T19:00:02Z) - Understanding the Role of Human Intuition on Reliance in Human-AI
Decision-Making with Explanations [44.01143305912054]
We study how decision-makers' intuition affects their use of AI predictions and explanations.
Our results identify three types of intuition involved in reasoning about AI predictions and explanations.
We use these pathways to explain why feature-based explanations did not improve participants' decision outcomes and increased their overreliance on AI.
arXiv Detail & Related papers (2023-01-18T01:33:50Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
We present a user-centered persona concept to evaluate explainable AI (XAI)
Results show that users' demographics and personality, as well as the type of explanation, impact explanation preferences.
Our insights bring an interactive, human-centered XAI closer to practical application.
arXiv Detail & Related papers (2022-10-07T12:51:27Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.