Generative AI for Unmanned Vehicle Swarms: Challenges, Applications and
Opportunities
- URL: http://arxiv.org/abs/2402.18062v1
- Date: Wed, 28 Feb 2024 05:46:23 GMT
- Title: Generative AI for Unmanned Vehicle Swarms: Challenges, Applications and
Opportunities
- Authors: Guangyuan Liu, Nguyen Van Huynh, Hongyang Du, Dinh Thai Hoang, Dusit
Niyato, Kun Zhu, Jiawen Kang, Zehui Xiong, Abbas Jamalipour, Dong In Kim
- Abstract summary: Generative AI (GAI) offers great potential in solving these challenges of unmanned vehicle swarms.
This paper presents an overview of unmanned vehicles and unmanned vehicle swarms as well as their use cases and existing issues.
Then, we present a comprehensive review on the applications and challenges of GAI in unmanned vehicle swarms with various insights and discussions.
- Score: 84.00105187866806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With recent advances in artificial intelligence (AI) and robotics, unmanned
vehicle swarms have received great attention from both academia and industry
due to their potential to provide services that are difficult and dangerous to
perform by humans. However, learning and coordinating movements and actions for
a large number of unmanned vehicles in complex and dynamic environments
introduce significant challenges to conventional AI methods. Generative AI
(GAI), with its capabilities in complex data feature extraction,
transformation, and enhancement, offers great potential in solving these
challenges of unmanned vehicle swarms. For that, this paper aims to provide a
comprehensive survey on applications, challenges, and opportunities of GAI in
unmanned vehicle swarms. Specifically, we first present an overview of unmanned
vehicles and unmanned vehicle swarms as well as their use cases and existing
issues. Then, an in-depth background of various GAI techniques together with
their capabilities in enhancing unmanned vehicle swarms are provided. After
that, we present a comprehensive review on the applications and challenges of
GAI in unmanned vehicle swarms with various insights and discussions. Finally,
we highlight open issues of GAI in unmanned vehicle swarms and discuss
potential research directions.
Related papers
- GenAI-powered Multi-Agent Paradigm for Smart Urban Mobility: Opportunities and Challenges for Integrating Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with Intelligent Transportation Systems [10.310791311301962]
This paper explores the transformative potential of large language models (LLMs) and emerging Retrieval-Augmented Generation (RAG) technologies.
We propose a conceptual framework aimed at developing multi-agent systems capable of intelligently and conversationally delivering smart mobility services.
arXiv Detail & Related papers (2024-08-31T16:14:42Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - A Survey of Generative AI for Intelligent Transportation Systems: Road Transportation Perspective [7.770651543578893]
We introduce the principles of different generative AI techniques.
We classify tasks in ITS into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making.
We illustrate how generative AI techniques addresses key issues in these four different types of tasks.
arXiv Detail & Related papers (2023-12-13T16:13:23Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Survey of Deep Learning for Autonomous Surface Vehicles in the Marine
Environment [15.41166179659646]
Within the next several years, there will be a high level of autonomous technology that will be available for widespread use.
This paper surveys the existing work regarding the implementation of deep learning (DL) methods in ASV-related fields.
arXiv Detail & Related papers (2022-10-16T08:46:17Z) - Intelligent Traffic Monitoring with Hybrid AI [78.65479854534858]
We introduce HANS, a neuro-symbolic architecture for multi-modal context understanding.
We show how HANS addresses the challenges associated with traffic monitoring while being able to integrate with a wide range of reasoning methods.
arXiv Detail & Related papers (2022-08-31T17:47:22Z) - A Review of Autonomous Road Vehicle Integrated Approaches to an
Emergency Obstacle Avoidance Maneuver [0.0]
This manuscript highlights systems that are crucial for an emergency obstacle avoidance maneuver (EOAM)
It identifies the state-of-the-art for each of the related systems, while considering the nuances of traveling at highway speeds.
arXiv Detail & Related papers (2021-05-20T01:11:26Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCC ideates on a data-centered society aiming at improving efficiency by automating and optimizing activities and utilities.
This paper describes AI perspectives in SCC and gives an overview of AI-based technologies used in traffic to enable road vehicle automation and smart traffic control.
arXiv Detail & Related papers (2021-04-07T14:31:08Z) - Challenges of engineering safe and secure highly automated vehicles [0.0]
This paper sets out to summarize the major challenges that are still to overcome for achieving safe, secure, reliable and trustworthy highly automated vehicles (HAV)
Four challenges have been identified as being the main obstacles to realizing HAV: Realization of continuous, post-deployment systems improvement, handling of uncertainties and incomplete information, verification of HAV with machine learning components, and prediction.
arXiv Detail & Related papers (2021-03-05T08:52:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.