Saving the legacy of Hero Ibash: Evaluating Four Language Models for
Aminoacian
- URL: http://arxiv.org/abs/2402.18121v1
- Date: Wed, 28 Feb 2024 07:22:13 GMT
- Title: Saving the legacy of Hero Ibash: Evaluating Four Language Models for
Aminoacian
- Authors: Yunze Xiao and Yiyang Pan
- Abstract summary: This study assesses four cutting-edge language models in the underexplored Aminoacian language.
It scrutinizes their adaptability, effectiveness, and limitations in text generation, semantic coherence, and contextual understanding.
- Score: 0.8158530638728501
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study assesses four cutting-edge language models in the underexplored
Aminoacian language. Through evaluation, it scrutinizes their adaptability,
effectiveness, and limitations in text generation, semantic coherence, and
contextual understanding. Uncovering insights into these models' performance in
a low-resourced language, this research pioneers pathways to bridge linguistic
gaps. By offering benchmarks and understanding challenges, it lays groundwork
for future advancements in natural language processing, aiming to elevate the
applicability of language models in similar linguistic landscapes, marking a
significant step toward inclusivity and progress in language technology.
Related papers
- The Curious Decline of Linguistic Diversity: Training Language Models on Synthetic Text [29.586404361715054]
This study investigates the consequences of training language models on synthetic data generated by their predecessors.
Our findings reveal a consistent decrease in the diversity of the model outputs through successive iterations.
Our study highlights the need for careful consideration of the long-term effects of such training approaches on the linguistic capabilities of language models.
arXiv Detail & Related papers (2023-11-16T11:31:50Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
We propose a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks.
Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena.
For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge.
arXiv Detail & Related papers (2023-07-16T15:18:25Z) - BabySLM: language-acquisition-friendly benchmark of self-supervised
spoken language models [56.93604813379634]
Self-supervised techniques for learning speech representations have been shown to develop linguistic competence from exposure to speech without the need for human labels.
We propose a language-acquisition-friendly benchmark to probe spoken language models at the lexical and syntactic levels.
We highlight two exciting challenges that need to be addressed for further progress: bridging the gap between text and speech and between clean speech and in-the-wild speech.
arXiv Detail & Related papers (2023-06-02T12:54:38Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
Figurative and metaphorical language are commonplace in discourse.
It remains an open question to what extent modern language models can interpret nonliteral phrases.
We introduce Fig-QA, a Winograd-style nonliteral language understanding task.
arXiv Detail & Related papers (2022-04-26T23:42:22Z) - Curriculum: A Broad-Coverage Benchmark for Linguistic Phenomena in
Natural Language Understanding [1.827510863075184]
Curriculum is a new format of NLI benchmark for evaluation of broad-coverage linguistic phenomena.
We show that this linguistic-phenomena-driven benchmark can serve as an effective tool for diagnosing model behavior and verifying model learning quality.
arXiv Detail & Related papers (2022-04-13T10:32:03Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - The Rediscovery Hypothesis: Language Models Need to Meet Linguistics [8.293055016429863]
We study whether linguistic knowledge is a necessary condition for good performance of modern language models.
We show that language models that are significantly compressed but perform well on their pretraining objectives retain good scores when probed for linguistic structures.
This result supports the rediscovery hypothesis and leads to the second contribution of our paper: an information-theoretic framework that relates language modeling objective with linguistic information.
arXiv Detail & Related papers (2021-03-02T15:57:39Z) - Linguistic Features for Readability Assessment [0.0]
It is unknown whether augmenting deep learning models with linguistically motivated features would improve performance further.
We find that, given sufficient training data, augmenting deep learning models with linguistically motivated features does not improve state-of-the-art performance.
Our results provide preliminary evidence for the hypothesis that the state-of-the-art deep learning models represent linguistic features of the text related to readability.
arXiv Detail & Related papers (2020-05-30T22:14:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.