TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understanding
- URL: http://arxiv.org/abs/2402.18490v2
- Date: Tue, 2 Apr 2024 03:50:34 GMT
- Title: TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understanding
- Authors: Zhihao Zhang, Shengcao Cao, Yu-Xiong Wang,
- Abstract summary: TriAdapter Multi-Modal Learning (TAMM) is a novel two-stage learning approach based on three synergistic adapters.
TAMM consistently enhances 3D representations for a wide range of 3D encoder architectures, pre-training datasets, and downstream tasks.
- Score: 28.112402580426174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The limited scale of current 3D shape datasets hinders the advancements in 3D shape understanding, and motivates multi-modal learning approaches which transfer learned knowledge from data-abundant 2D image and language modalities to 3D shapes. However, even though the image and language representations have been aligned by cross-modal models like CLIP, we find that the image modality fails to contribute as much as the language in existing multi-modal 3D representation learning methods. This is attributed to the domain shift in the 2D images and the distinct focus of each modality. To more effectively leverage both modalities in the pre-training, we introduce TriAdapter Multi-Modal Learning (TAMM) -- a novel two-stage learning approach based on three synergistic adapters. First, our CLIP Image Adapter mitigates the domain gap between 3D-rendered images and natural images, by adapting the visual representations of CLIP for synthetic image-text pairs. Subsequently, our Dual Adapters decouple the 3D shape representation space into two complementary sub-spaces: one focusing on visual attributes and the other for semantic understanding, which ensure a more comprehensive and effective multi-modal pre-training. Extensive experiments demonstrate that TAMM consistently enhances 3D representations for a wide range of 3D encoder architectures, pre-training datasets, and downstream tasks. Notably, we boost the zero-shot classification accuracy on Objaverse-LVIS from 46.8\% to 50.7\%, and improve the 5-way 10-shot linear probing classification accuracy on ModelNet40 from 96.1\% to 99.0\%. Project page: https://alanzhangcs.github.io/tamm-page.
Related papers
- Cross-Modal Self-Training: Aligning Images and Pointclouds to Learn Classification without Labels [69.55622471172941]
Large-scale vision 2D vision language models, such as CLIP can be aligned with a 3D encoder to learn generalizable (open-vocabulary) 3D vision models.
We propose an optimization framework: Cross-MoST: Cross-Modal Self-Training, to improve the label-free classification performance of a zero-shot 3D vision model.
arXiv Detail & Related papers (2024-04-15T21:30:50Z) - Beyond First Impressions: Integrating Joint Multi-modal Cues for
Comprehensive 3D Representation [72.94143731623117]
Existing methods simply align 3D representations with single-view 2D images and coarse-grained parent category text.
Insufficient synergy neglects the idea that a robust 3D representation should align with the joint vision-language space.
We propose a multi-view joint modality modeling approach, termed JM3D, to obtain a unified representation for point cloud, text, and image.
arXiv Detail & Related papers (2023-08-06T01:11:40Z) - ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding [96.95120198412395]
We introduce tri-modal pre-training framework that automatically generates holistic language descriptions for 3D shapes.
It only needs 3D data as input, eliminating the need for any manual 3D annotations, and is therefore scalable to large datasets.
We conduct experiments on two large-scale 3D datasets, NN and ShapeNet, and augment them with tri-modal datasets of 3D point clouds, captioning, and language for training.
Experiments show that NN-2 demonstrates substantial benefits in three downstream tasks: zero-shot 3D classification, standard 3D classification with finetuning, and 3D (3D
arXiv Detail & Related papers (2023-05-14T23:14:09Z) - CLIP$^2$: Contrastive Language-Image-Point Pretraining from Real-World
Point Cloud Data [80.42480679542697]
We propose Contrastive Language-Image-Point Cloud Pretraining (CLIP$2$) to learn the transferable 3D point cloud representation in realistic scenarios.
Specifically, we exploit naturally-existed correspondences in 2D and 3D scenarios, and build well-aligned and instance-based text-image-point proxies from those complex scenarios.
arXiv Detail & Related papers (2023-03-22T09:32:45Z) - Learning 3D Representations from 2D Pre-trained Models via
Image-to-Point Masked Autoencoders [52.91248611338202]
We propose an alternative to obtain superior 3D representations from 2D pre-trained models via Image-to-Point Masked Autoencoders, named as I2P-MAE.
By self-supervised pre-training, we leverage the well learned 2D knowledge to guide 3D masked autoencoding.
I2P-MAE attains the state-of-the-art 90.11% accuracy, +3.68% to the second-best, demonstrating superior transferable capacity.
arXiv Detail & Related papers (2022-12-13T17:59:20Z) - ULIP: Learning a Unified Representation of Language, Images, and Point
Clouds for 3D Understanding [110.07170245531464]
Current 3D models are limited by datasets with a small number of annotated data and a pre-defined set of categories.
Recent advances have shown that similar problems can be significantly alleviated by employing knowledge from other modalities, such as language.
We learn a unified representation of images, texts, and 3D point clouds by pre-training with object triplets from the three modalities.
arXiv Detail & Related papers (2022-12-10T01:34:47Z) - Self-supervised Feature Learning by Cross-modality and Cross-view
Correspondences [32.01548991331616]
This paper presents a novel self-supervised learning approach to learn both 2D image features and 3D point cloud features.
It exploits cross-modality and cross-view correspondences without using any annotated human labels.
The effectiveness of the learned 2D and 3D features is evaluated by transferring them on five different tasks.
arXiv Detail & Related papers (2020-04-13T02:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.