Utilizing Local Hierarchy with Adversarial Training for Hierarchical Text Classification
- URL: http://arxiv.org/abs/2402.18825v2
- Date: Fri, 29 Mar 2024 08:08:41 GMT
- Title: Utilizing Local Hierarchy with Adversarial Training for Hierarchical Text Classification
- Authors: Zihan Wang, Peiyi Wang, Houfeng Wang,
- Abstract summary: Hierarchical text classification (HTC) is a challenging subtask due to its complex taxonomic structure.
We propose a HiAdv framework that can fit in nearly all HTC models and optimize them with the local hierarchy as auxiliary information.
- Score: 30.353876890557984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hierarchical text classification (HTC) is a challenging subtask of multi-label classification due to its complex taxonomic structure. Nearly all recent HTC works focus on how the labels are structured but ignore the sub-structure of ground-truth labels according to each input text which contains fruitful label co-occurrence information. In this work, we introduce this local hierarchy with an adversarial framework. We propose a HiAdv framework that can fit in nearly all HTC models and optimize them with the local hierarchy as auxiliary information. We test on two typical HTC models and find that HiAdv is effective in all scenarios and is adept at dealing with complex taxonomic hierarchies. Further experiments demonstrate that the promotion of our framework indeed comes from the local hierarchy and the local hierarchy is beneficial for rare classes which have insufficient training data.
Related papers
- HiLight: A Hierarchy-aware Light Global Model with Hierarchical Local ConTrastive Learning [3.889612454093451]
Hierarchical text classification (HTC) is a sub-task of multi-label classification (MLC)
We propose a new learning task to introduce the hierarchical information, called Hierarchical Local Contrastive Learning (HiLCL)
arXiv Detail & Related papers (2024-08-11T14:26:58Z) - Hierarchical Verbalizer for Few-Shot Hierarchical Text Classification [10.578682558356473]
hierarchical text classification (HTC) suffers a poor performance when low-resource or few-shot settings are considered.
In this work, we propose the hierarchical verbalizer ("HierVerb"), a multi-verbalizer framework treating HTC as a single- or multi-label classification problem.
In this manner, HierVerb fuses label hierarchy knowledge into verbalizers and remarkably outperforms those who inject hierarchy through graph encoders.
arXiv Detail & Related papers (2023-05-26T12:41:49Z) - HiTIN: Hierarchy-aware Tree Isomorphism Network for Hierarchical Text
Classification [18.03202012033514]
We propose hierarchy-aware Tree Isomorphism Network (HiTIN) to enhance the text representations with only syntactic information of the label hierarchy.
We conduct experiments on three commonly used datasets and the results demonstrate that HiTIN could achieve better test performance and less memory consumption.
arXiv Detail & Related papers (2023-05-24T14:14:08Z) - HPT: Hierarchy-aware Prompt Tuning for Hierarchical Text Classification [45.314357107687286]
We propose HPT, a Hierarchy-aware Prompt Tuning method to handle HTC from a multi-label perspective.
Specifically, we construct dynamic virtual template and label words which take the form of soft prompts to fuse the label hierarchy knowledge.
Experiments show HPT achieves the state-of-the-art performances on 3 popular HTC datasets.
arXiv Detail & Related papers (2022-04-28T11:22:49Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
We present a hierarchical multi-label representation learning framework that can leverage all available labels and preserve the hierarchical relationship between classes.
We introduce novel hierarchy preserving losses, which jointly apply a hierarchical penalty to the contrastive loss, and enforce the hierarchy constraint.
arXiv Detail & Related papers (2022-04-27T21:41:44Z) - Constrained Sequence-to-Tree Generation for Hierarchical Text
Classification [10.143177923523407]
Hierarchical Text Classification (HTC) is a challenging task where a document can be assigned to multiple hierarchically structured categories within a taxonomy.
In this paper, we formulate HTC as a sequence generation task and introduce a sequence-to-tree framework (Seq2Tree) for modeling the hierarchical label structure.
arXiv Detail & Related papers (2022-04-02T08:35:39Z) - Deep Hierarchical Semantic Segmentation [76.40565872257709]
hierarchical semantic segmentation (HSS) aims at structured, pixel-wise description of visual observation in terms of a class hierarchy.
HSSN casts HSS as a pixel-wise multi-label classification task, only bringing minimal architecture change to current segmentation models.
With hierarchy-induced margin constraints, HSSN reshapes the pixel embedding space, so as to generate well-structured pixel representations.
arXiv Detail & Related papers (2022-03-27T15:47:44Z) - Hierarchical Text Classification As Sub-Hierarchy Sequence Generation [8.062201442038957]
Hierarchical text classification (HTC) is essential for various real applications.
Recent HTC models have attempted to incorporate hierarchy information into a model structure.
We formulate HTC as a sub-hierarchy sequence generation to incorporate hierarchy information into a target label sequence.
HiDEC achieved state-of-the-art performance with significantly fewer model parameters than existing models on benchmark datasets.
arXiv Detail & Related papers (2021-11-22T10:50:39Z) - HTCInfoMax: A Global Model for Hierarchical Text Classification via
Information Maximization [75.45291796263103]
The current state-of-the-art model HiAGM for hierarchical text classification has two limitations.
It correlates each text sample with all labels in the dataset which contains irrelevant information.
We propose HTCInfoMax to address these issues by introducing information which includes two modules.
arXiv Detail & Related papers (2021-04-12T06:04:20Z) - MATCH: Metadata-Aware Text Classification in A Large Hierarchy [60.59183151617578]
MATCH is an end-to-end framework that leverages both metadata and hierarchy information.
We propose different ways to regularize the parameters and output probability of each child label by its parents.
Experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH.
arXiv Detail & Related papers (2021-02-15T05:23:08Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
The proposed method can improve several state-of-the-art baselines by a large margin (up to $33%$ relative gain) in terms of Recall@50.
Experiments show that the proposed simple yet effective method can improve several state-of-the-art baselines by a large margin.
arXiv Detail & Related papers (2020-09-12T17:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.