Taking Second-life Batteries from Exhausted to Empowered using Experiments, Data Analysis, and Health Estimation
- URL: http://arxiv.org/abs/2402.18859v2
- Date: Sat, 8 Jun 2024 16:46:51 GMT
- Title: Taking Second-life Batteries from Exhausted to Empowered using Experiments, Data Analysis, and Health Estimation
- Authors: Xiaofan Cui, Muhammad Aadil Khan, Gabriele Pozzato, Surinder Singh, Ratnesh Sharma, Simona Onori,
- Abstract summary: Reuse of retired electric vehicle batteries in grid energy storage offers environmental and economic benefits.
This study concentrates on health monitoring algorithms for retired batteries deployed in grid storage.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reuse of retired electric vehicle batteries in grid energy storage offers environmental and economic benefits. This study concentrates on health monitoring algorithms for retired batteries deployed in grid storage. Over 15 months of testing, we collect, analyze, and publicize a dataset of second-life batteries, implementing a cycling protocol simulating grid energy storage load profiles within a 3-4 V voltage window. Four machine-learning-based health estimation models, relying on online-accessible features and initial capacity, are compared, with the selected model achieving a mean absolute percentage error below 2.3% on test data. Additionally, an adaptive online health estimation algorithm is proposed by integrating a clustering-based method, thus limiting estimation errors during online deployment. These results showcase the feasibility of repurposing retired batteries for second-life applications. Based on obtained data and power demand, these second-life batteries exhibit potential for over a decade of grid energy storage use.
Related papers
- BatSort: Enhanced Battery Classification with Transfer Learning for Battery Sorting and Recycling [42.453194049264646]
We introduce a machine learning-based approach for battery-type classification and address the problem of data scarcity for the application.
We propose BatSort which applies transfer learning to utilize the existing knowledge optimized with large-scale datasets.
We conducted an experimental study and the results show that BatSort can achieve outstanding accuracy of 92.1% on average and up to 96.2%.
arXiv Detail & Related papers (2024-04-08T18:05:24Z) - Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries
(For EV Vehicles) [0.0]
We present a review of the existing approaches for estimating the remaining useful life of lithium-ion batteries.
We propose a novel approach based on machine learning techniques for accurately predicting the remaining useful life of lithium-ion batteries.
arXiv Detail & Related papers (2023-05-17T15:35:31Z) - Evaluating feasibility of batteries for second-life applications using
machine learning [0.0]
This paper presents a combination of machine learning techniques to enable prompt evaluation of retired electric vehicle batteries.
The proposed algorithm generates features from available battery current and voltage measurements with simple statistics.
It selects and ranks the features using correlation analysis, and employs Gaussian Process Regression enhanced with bagging.
arXiv Detail & Related papers (2022-03-08T18:07:33Z) - Battery Cloud with Advanced Algorithms [1.7205106391379026]
A Battery Cloud or cloud battery management system leverages the cloud computational power and data storage to improve battery safety, performance, and economy.
This work will present the Battery Cloud that collects measured battery data from electric vehicles and energy storage systems.
arXiv Detail & Related papers (2022-03-07T21:56:17Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
This paper utilizes the data and methods implemented by Kristen A. Severson, et al, to explore the methodologies that the research team used.
The fundamental effort is to find out if machine learning techniques may be trained to use early life cycle data in order to accurately predict battery capacity.
arXiv Detail & Related papers (2021-10-19T01:35:12Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
We propose a novel method of time-series battery data augmentation using deep neural networks.
One model produces battery charging profiles, and another produces battery discharging profiles.
Results show the efficacy of this approach to solve the challenges of limited battery data.
arXiv Detail & Related papers (2021-10-05T16:17:19Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
A lowering in the cost of batteries and solar PV systems has led to a high uptake of solar battery home systems.
In this work, we use the deep deterministic policy algorithm to optimise the charging and discharging behaviour of a battery within such a system.
arXiv Detail & Related papers (2021-09-10T10:59:14Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.