Non-stationary SQM/IST Correspondence and ${\cal CPT}/{\cal PT}$-invariant paired Hamiltonians on the line
- URL: http://arxiv.org/abs/2402.19066v3
- Date: Sat, 11 May 2024 17:27:29 GMT
- Title: Non-stationary SQM/IST Correspondence and ${\cal CPT}/{\cal PT}$-invariant paired Hamiltonians on the line
- Authors: V. P. Berezovoj, A. J. Nurmagambetov,
- Abstract summary: We extend the consideration to the case of paired stationary and non-stationary Hamiltonians.
We find the way of constructing non-hermitian Hamiltonians from the initially hermitian ones.
The relevance of our proposal to Quantum Optics and optical waveguides technology, as well as to non-valued dynamics and Black Hole Physics is briefly discussed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We fill some of existed gaps in the correspondence between Supersymmetric Quantum Mechanics and the Inverse Scattering Transform by extending the consideration to the case of paired stationary and non-stationary Hamiltonians. We formulate the corresponding to the case Goursat problem and explicitly construct the kernel of the non-local Inverse Scattering Transform, which solves it. As a result, we find the way of constructing non-hermitian Hamiltonians from the initially hermitian ones, that leads, in the case of real-valued spectra of both potentials, to pairing of ${\cal CPT/PT}$-invariant Hamiltonians. The relevance of our proposal to Quantum Optics and optical waveguides technology, as well as to non-linear dynamics and Black Hole Physics is briefly discussed.
Related papers
- Quantifying non-Hermiticity using single- and many-particle quantum properties [14.37149160708975]
The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2024-06-19T13:04:47Z) - Quantum State Transfer in Interacting, Multiple-Excitation Systems [41.94295877935867]
Quantum state transfer (QST) describes the coherent passage of quantum information from one node to another.
We describe Monte Carlo techniques which enable the discovery of a Hamiltonian that gives high-fidelity QST.
The resulting Jaynes-Cummings-Hubbard and periodic Anderson models can, in principle, be engineered in appropriate hardware to give efficient QST.
arXiv Detail & Related papers (2024-05-10T23:46:35Z) - Systematic many-fermion Hamiltonian input scheme and spectral calculations on quantum computers [0.0]
We present a novel input scheme for general second-quantized Hamiltonians of relativistic or non-relativistic many-fermion systems.
Based on our input scheme, we propose a hybrid quantum-classical framework for spectral calculations on future quantum hardwares.
arXiv Detail & Related papers (2024-02-14T06:29:32Z) - Non-Hermiticity in quantum nonlinear optics through symplectic
transformations [0.0]
We show that second-quantised Hermitian Hamiltonians on the Fock space give rise to non-Hermitian effective Hamiltonians.
We create a quantum optical scheme for simulating arbitrary non-unitary processes by way of singular value decomposition.
arXiv Detail & Related papers (2023-10-06T18:41:46Z) - Measuring quantum geometric tensor of non-Abelian system in
superconducting circuits [21.82634956452952]
We use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation.
We reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
arXiv Detail & Related papers (2022-09-26T01:08:39Z) - Protection of quantum evolutions under parity-time symmetric
non-Hermitian Hamiltonians by dynamical decoupling [8.540612560553887]
Parity-time (PT) symmetric non-Hermitian Hamiltonians bring about many novel features and interesting applications.
The performance of evolutions under $mathcalPT$-symmetric Hamiltonians is degraded by the inevitable noise and errors.
In contrast to Hermitian Hamiltonians, the fluctuations in dissipative beams that are utilized to generate non-Hermitian contributions in the PT-symmetric Hamiltonians cause additional errors.
Here we achieve the protection of PT-symmetric Hamiltonians against noise acting along the qubit's quantization axis by combining quantum evolutions with dynamical decoupling sequences
arXiv Detail & Related papers (2022-03-03T01:50:13Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Non-adiabatic transitions in parabolic and super-parabolic
$\mathcal{PT}$-symmetric non-Hermitian systems [4.4074213830420055]
The dynamics of non-Hermitian systems in the presence of exceptional points differ significantly from those of Hermitian ones.
We identify different transmission dynamics separated by exceptional points, and derive analytical approximate formulas for the non-adiabatic transmission probabilities.
We discuss possible experimental realizations with a $mathcalPmathcalT$-symmetric non-Hermitian one-dimensional tight-binding optical waveguide lattice.
arXiv Detail & Related papers (2020-07-09T07:02:49Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.