Experimental investigation of a multi-photon Heisenberg-limited interferometric scheme: the effect of imperfections
- URL: http://arxiv.org/abs/2402.19079v2
- Date: Fri, 5 Apr 2024 04:55:15 GMT
- Title: Experimental investigation of a multi-photon Heisenberg-limited interferometric scheme: the effect of imperfections
- Authors: Shakib Daryanoosh, Geoff J. Pryde, Howard M. Wiseman, Sergei Slussarenko,
- Abstract summary: We show how to achieve the exact Heisenberg limit (HL) in ab-initio phase estimation with $N=3$ photon-passes.
The advantage of the HL over the SNL increases with the number of resources used.
We show that the expected usefulness of the prepared triphoton state for HL phase estimation is significantly degraded by even quite small experimental imperfections.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interferometric phase estimation is an essential tool for precise measurements of quantities such as displacement, velocity and material properties. The lower bound on measurement uncertainty achievable with classical resources is set by the shot-noise limit (SNL) that scales asymptotically as $1/\sqrt{N}$, where $N$ is the number of resources used. The experiment of [S. Daryanoosh et al., Nat. Commun. ${\bf 9}$, 4606 (2018)] showed how to achieve the ultimate precision limit, the exact Heisenberg limit (HL), in ab-initio phase estimation with $N=3$ photon-passes, using an entangled biphoton state in combination with particular measurement techniques. The advantage of the HL over the SNL increases with the number of resources used. Here we present, and implement experimentally, a scheme for generation of the optimal $N=7$ triphoton state. We study experimentally and theoretically the generated state quality and its potential for phase estimation. We show that the expected usefulness of the prepared triphoton state for HL phase estimation is significantly degraded by even quite small experimental imperfections, such as optical mode mismatch and unwanted higher-order multi-photon terms in the states produced in parametric down-conversion.
Related papers
- Tripartite entanglement from experimental data: $B^0\to K^{*0}μ^+μ^-$ as a case study [49.1574468325115]
We develop an angular analysis based on the reconstruction of the helicity amplitudes from dedicated experimental data corresponding to the tripartite state composed by one qutrit and two qubits.
As an application of our analysis, we performed a full quantum tomography of the final state in the $B0to K*0mu+mu-$ decays using data recorded by LHCb collaboration.
arXiv Detail & Related papers (2024-09-19T18:10:14Z) - Heisenberg Limit beyond Quantum Fisher Information [0.0]
Using entangled quantum states, it is possible to scale the precision with $N$ better than when resources would be used independently.
I derive bounds on the precision of the estimation for the case of noiseless unitary evolution.
I analyze the problem of the Heisenberg limit when multiple parameters are measured simultaneously on the same physical system.
arXiv Detail & Related papers (2023-04-27T17:43:45Z) - Precision Bounds on Continuous-Variable State Tomography using Classical
Shadows [0.46603287532620735]
We recast experimental protocols for continuous-variable quantum state tomography in the classical-shadow framework.
We analyze the efficiency of homodyne, heterodyne, photon number resolving (PNR), and photon-parity protocols.
numerical and experimental homodyne tomography significantly outperforms our bounds.
arXiv Detail & Related papers (2022-11-09T19:01:13Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Experimentally determining the incompatibility of two qubit measurements [55.41644538483948]
We describe and realize an experimental procedure for assessing the incompatibility of two qubit measurements.
We demonstrate this fact in an optical setup, where the qubit states are encoded into the photons' polarization degrees of freedom.
arXiv Detail & Related papers (2021-12-15T19:01:44Z) - Deterministic quantum phase estimation beyond the ideal NOON state limit [0.0]
We develop a new type of phase estimation scheme based on a deterministic source of Gaussian squeezed vacuum states and high-efficiency homodyne detection.
Using a high-efficiency setup with a total loss of about 11% we achieve a Fisher Information of 15.8(6) rad2 per photon unparalleled by any other optical phase estimation technology.
The work represents a fundamental achievement in quantum metrology, and it opens the door to future quantum sensing technologies for the interrogation of light-sensitive biological systems.
arXiv Detail & Related papers (2021-11-18T15:37:13Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Weakly invasive metrology: quantum advantage and physical
implementations [0.0]
We show that arbitrarily intense coherent states can obtain information at a rate that scales at most linearly with $N_rm abs$ and $T$.
We discuss an implementation in cavity QED, where Fock states are both prepared and measured by coupling atomic ensembles to the cavities.
arXiv Detail & Related papers (2020-06-22T10:14:36Z) - Optical Phase Measurement Using a Deterministic Source of Entangled
Multi-photon States [0.0]
Entangled multi-photon states have been suggested for performing such measurements with precision that significantly surpasses the shot-noise limit.
Here, we use a semiconductor quantum dot to generate entangled multi-photon states in a deterministic manner.
This way we entangle photons one-by-one at a rate which exceeds 300 MHz.
arXiv Detail & Related papers (2020-02-20T13:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.