Modular Blind Video Quality Assessment
- URL: http://arxiv.org/abs/2402.19276v4
- Date: Sun, 31 Mar 2024 15:19:30 GMT
- Title: Modular Blind Video Quality Assessment
- Authors: Wen Wen, Mu Li, Yabin Zhang, Yiting Liao, Junlin Li, Li Zhang, Kede Ma,
- Abstract summary: Blind video quality assessment (BVQA) plays a pivotal role in evaluating and improving the viewing experience of end-users across a wide range of video-based platforms and services.
In this paper, we propose a modular BVQA model and a method of training it to improve its modularity.
- Score: 33.657933680973194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind video quality assessment (BVQA) plays a pivotal role in evaluating and improving the viewing experience of end-users across a wide range of video-based platforms and services. Contemporary deep learning-based models primarily analyze video content in its aggressively subsampled format, while being blind to the impact of the actual spatial resolution and frame rate on video quality. In this paper, we propose a modular BVQA model and a method of training it to improve its modularity. Our model comprises a base quality predictor, a spatial rectifier, and a temporal rectifier, responding to the visual content and distortion, spatial resolution, and frame rate changes on video quality, respectively. During training, spatial and temporal rectifiers are dropped out with some probabilities to render the base quality predictor a standalone BVQA model, which should work better with the rectifiers. Extensive experiments on both professionally-generated content and user-generated content video databases show that our quality model achieves superior or comparable performance to current methods. Additionally, the modularity of our model offers an opportunity to analyze existing video quality databases in terms of their spatial and temporal complexity.
Related papers
- Enhancing Blind Video Quality Assessment with Rich Quality-aware Features [79.18772373737724]
We present a simple but effective method to enhance blind video quality assessment (BVQA) models for social media videos.
We explore rich quality-aware features from pre-trained blind image quality assessment (BIQA) and BVQA models as auxiliary features.
Experimental results demonstrate that the proposed model achieves the best performance on three public social media VQA datasets.
arXiv Detail & Related papers (2024-05-14T16:32:11Z) - SalFoM: Dynamic Saliency Prediction with Video Foundation Models [37.25208752620703]
Video saliency prediction (VSP) has shown promising performance compared to the human visual system.
We introduce SalFoM, a novel encoder-decoder video transformer architecture.
Our model employs UnMasked Teacher (UMT) extractor and presents a heterogeneous decoder-aware informationtemporal transformer.
arXiv Detail & Related papers (2024-04-03T22:38:54Z) - KVQ: Kwai Video Quality Assessment for Short-form Videos [24.5291786508361]
We establish the first large-scale Kaleidoscope short Video database for Quality assessment, KVQ, which comprises 600 user-uploaded short videos and 3600 processed videos.
We propose the first short-form video quality evaluator, i.e., KSVQE, which enables the quality evaluator to identify the quality-determined semantics with the content understanding of large vision language models.
arXiv Detail & Related papers (2024-02-11T14:37:54Z) - Analysis of Video Quality Datasets via Design of Minimalistic Video Quality Models [71.06007696593704]
Blind quality assessment (BVQA) plays an indispensable role in monitoring and improving the end-users' viewing experience in real-world video-enabled media applications.
As an experimental field, the improvements of BVQA models have been measured primarily on a few human-rated VQA datasets.
We conduct a first-of-its-kind computational analysis of VQA datasets via minimalistic BVQA models.
arXiv Detail & Related papers (2023-07-26T06:38:33Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms.
Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner.
Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning.
arXiv Detail & Related papers (2022-06-29T15:22:01Z) - DisCoVQA: Temporal Distortion-Content Transformers for Video Quality
Assessment [56.42140467085586]
Some temporal variations are causing temporal distortions and lead to extra quality degradations.
Human visual system often has different attention to frames with different contents.
We propose a novel and effective transformer-based VQA method to tackle these two issues.
arXiv Detail & Related papers (2022-06-20T15:31:27Z) - A Deep Learning based No-reference Quality Assessment Model for UGC
Videos [44.00578772367465]
Previous video quality assessment (VQA) studies either use the image recognition model or the image quality assessment (IQA) models to extract frame-level features of videos for quality regression.
We propose a very simple but effective VQA model, which trains an end-to-end spatial feature extraction network to learn the quality-aware spatial feature representation from raw pixels of the video frames.
With the better quality-aware features, we only use the simple multilayer perception layer (MLP) network to regress them into the chunk-level quality scores, and then the temporal average pooling strategy is adopted to obtain the video
arXiv Detail & Related papers (2022-04-29T12:45:21Z) - RAPIQUE: Rapid and Accurate Video Quality Prediction of User Generated
Content [44.03188436272383]
We introduce an effective and efficient video quality model for content, which we dub the Rapid and Accurate Video Quality Evaluator (RAPIQUE)
RAPIQUE combines and leverages the advantages of both quality-aware scene statistics features and semantics-aware deep convolutional features.
Our experimental results on recent large-scale video quality databases show that RAPIQUE delivers top performances on all the datasets at a considerably lower computational expense.
arXiv Detail & Related papers (2021-01-26T17:23:46Z) - Study on the Assessment of the Quality of Experience of Streaming Video [117.44028458220427]
In this paper, the influence of various objective factors on the subjective estimation of the QoE of streaming video is studied.
The paper presents standard and handcrafted features, shows their correlation and p-Value of significance.
We take SQoE-III database, so far the largest and most realistic of its kind.
arXiv Detail & Related papers (2020-12-08T18:46:09Z) - UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated
Content [59.13821614689478]
Blind quality prediction of in-the-wild videos is quite challenging, since the quality degradations of content are unpredictable, complicated, and often commingled.
Here we contribute to advancing the problem by conducting a comprehensive evaluation of leading VQA models.
By employing a feature selection strategy on top of leading VQA model features, we are able to extract 60 of the 763 statistical features used by the leading models.
Our experimental results show that VIDEVAL achieves state-of-theart performance at considerably lower computational cost than other leading models.
arXiv Detail & Related papers (2020-05-29T00:39:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.