Deep Learning for Cross-Domain Data Fusion in Urban Computing: Taxonomy, Advances, and Outlook
- URL: http://arxiv.org/abs/2402.19348v2
- Date: Sun, 16 Jun 2024 10:16:00 GMT
- Title: Deep Learning for Cross-Domain Data Fusion in Urban Computing: Taxonomy, Advances, and Outlook
- Authors: Xingchen Zou, Yibo Yan, Xixuan Hao, Yuehong Hu, Haomin Wen, Erdong Liu, Junbo Zhang, Yong Li, Tianrui Li, Yu Zheng, Yuxuan Liang,
- Abstract summary: We propose the first survey that systematically reviews the latest advancements in deep learning-based data fusion methods tailored for urban computing.
We classify the methodology into four primary categories: feature-based, alignment-based, contrast-based, and generation-based fusion methods.
We further categorize multi-modal urban applications into seven types: urban planning, transportation, economy, public safety, society, environment, and energy.
- Score: 28.103555959143645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As cities continue to burgeon, Urban Computing emerges as a pivotal discipline for sustainable development by harnessing the power of cross-domain data fusion from diverse sources (e.g., geographical, traffic, social media, and environmental data) and modalities (e.g., spatio-temporal, visual, and textual modalities). Recently, we are witnessing a rising trend that utilizes various deep-learning methods to facilitate cross-domain data fusion in smart cities. To this end, we propose the first survey that systematically reviews the latest advancements in deep learning-based data fusion methods tailored for urban computing. Specifically, we first delve into data perspective to comprehend the role of each modality and data source. Secondly, we classify the methodology into four primary categories: feature-based, alignment-based, contrast-based, and generation-based fusion methods. Thirdly, we further categorize multi-modal urban applications into seven types: urban planning, transportation, economy, public safety, society, environment, and energy. Compared with previous surveys, we focus more on the synergy of deep learning methods with urban computing applications. Furthermore, we shed light on the interplay between Large Language Models (LLMs) and urban computing, postulating future research directions that could revolutionize the field. We firmly believe that the taxonomy, progress, and prospects delineated in our survey stand poised to significantly enrich the research community. The summary of the comprehensive and up-to-date paper list can be found at https://github.com/yoshall/Awesome-Multimodal-Urban-Computing.
Related papers
- Continual Learning for Smart City: A Survey [20.248023419047847]
Continual learning (CL) is a novel machine learning paradigm that constantly updates models to adapt to changing environments.
Our survey provides a comprehensive review of continual learning methods that are widely used in smart city development.
arXiv Detail & Related papers (2024-04-01T07:59:29Z) - A Survey of Route Recommendations: Methods, Applications, and Opportunities [20.248023419047847]
This survey offers a comprehensive review of route recommendation work based on urban computing.
We categorize a large volume of traditional machine learning and modern deep learning methods.
We present numerous novel applications related to route commendation within urban computing scenarios.
arXiv Detail & Related papers (2024-03-01T05:04:00Z) - Federated Learning for Generalization, Robustness, Fairness: A Survey
and Benchmark [55.898771405172155]
Federated learning has emerged as a promising paradigm for privacy-preserving collaboration among different parties.
We provide a systematic overview of the important and recent developments of research on federated learning.
arXiv Detail & Related papers (2023-11-12T06:32:30Z) - Unified Data Management and Comprehensive Performance Evaluation for
Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark] [78.05103666987655]
This work addresses challenges in accessing and utilizing diverse urban spatial-temporal datasets.
We introduceatomic files, a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets.
We conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions.
arXiv Detail & Related papers (2023-08-24T16:20:00Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
multimodal machine learning that incorporates data from various sources has become an increasingly popular research area.
We analyze the commonness and uniqueness of each data format mainly ranging from vision, audio, text, and motions.
We investigate the existing literature on multimodal learning from both the representation learning and downstream application levels.
arXiv Detail & Related papers (2022-10-05T13:14:57Z) - CityNet: A Comprehensive Multi-Modal Urban Dataset for Advanced Research in Urban Computing [1.9774168196078137]
We present CityNet, a multi-modal urban dataset that incorporates various data from seven cities.
We conduct extensive data mining and machine learning experiments to facilitate the use of CityNet.
arXiv Detail & Related papers (2021-06-30T04:05:51Z) - From Symbols to Embeddings: A Tale of Two Representations in
Computational Social Science [77.5409807529667]
The study of Computational Social Science (CSS) is data-driven and significantly benefits from the availability of online user-generated contents and social networks.
To explore the answer, we give a thorough review of data representations in CSS for both text and network.
We present the applications of the above representations based on the investigation of more than 400 research articles from 6 top venues involved with CSS.
arXiv Detail & Related papers (2021-06-27T11:04:44Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
Much concern in mobile data analysis is related to human beings and their behaviours.
This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.
arXiv Detail & Related papers (2020-08-29T15:14:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.